已知正方體ABCD―A1B1C1D1中.點(diǎn)M.N分別是在AB1.BC1上.且AM=BN.下列四個(gè)結(jié)論:①AA1⊥MN,②A1C1//MN,③MN//平面ABCD,④MN.AC為異面直線.其中正確的結(jié)論為 A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 查看更多

 

題目列表(包括答案和解析)

已知正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱AB,AA1的中點(diǎn),求證:三條直線DA,CE,D1F交于一點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

如圖,已知正方體ABCD-A1B1C1D1中,E是棱A1B1的中點(diǎn),則異面直線A1C與AE所成角的余弦值是
15
15
15
15

查看答案和解析>>

(2011•海淀區(qū)二模)已知正方體ABCD-A1B1C1D1中,點(diǎn)M為線段D1B1上的動(dòng)點(diǎn),點(diǎn)N為線段AC上的動(dòng)點(diǎn),則與線段DB1相交且互相平分的線段MN有( 。

查看答案和解析>>

已知正方體ABCD-A1B1C1D1中,
A1E
=
1
4
A1C1
,若
AE
=x
AA1
+y(
AB
+
AD
)
,則(  )
A、x=
1
2
,y=
1
2
B、x=
1
2
,y=1
C、x=1,y=
1
3
D、x=1,y=
1
4

查看答案和解析>>

已知正方體ABCD-A1B1C1D1中,E是CC1的中點(diǎn),O為面A1C1的中心,則異面直線OE與A1D所成角的正切值等于( 。
A、
1
2
B、
2
2
C、
2
D、2

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

C

A

B

A

C

B

理D 文B

D

理D 文C

二.填空題

13.(理)-1;(文) (-1,1)∪(2,+∞).         14. 90.

15. ;                                     16. (理)x+2y-3=0; (文).

三.解答題

17.  解:(I)平移以后得

,又關(guān)于對(duì)稱

, *

當(dāng)且僅當(dāng)時(shí)取最大值,

所以,取得最大值時(shí)的集合為.…………6分

(II)的最小正周期為; ,

在[上的值域?yàn)?sub>.…………12分

18.解:(I)當(dāng)n∈N時(shí)有:=2-3n,   ∴=2-3(n+1),

兩式相減得:=2-2-3   ∴=2+3! 撤

+3=2(+3)。

=2-3,   ∴=3, +3=6≠0   ……4分

∴數(shù)列{+3}是首項(xiàng)6,公比為2的等比數(shù)列.從而c=3.  ……6分

 (II)由(1)知:+3=,  ∴-3.    ………8分

(Ⅲ)假設(shè)數(shù)列{}中是否存在三項(xiàng),,,(r<s<t),它們可以構(gòu)成等差數(shù)列,

<<,   ∴只能是=2,

∴(-3)+(-3)=2(-3)

.∴1+. 

 ∵r<s<t,r、s、t均為正整數(shù),∴式左邊為奇數(shù)右邊為偶數(shù),不可能成立.

因此數(shù)列{}中不存在可以構(gòu)成等差數(shù)列的三項(xiàng).  ………12分

19. (理)解:設(shè)從甲袋中取出個(gè)白球的事件為,從乙袋中取出個(gè)白球的事件為其中=0,1,2,則,.

(I),,

所以………………………..6分

(II)分布列是

0

1

2

3

4

P

……………12分

(文) 19.(I)三人恰好買到同一只股票的概率。  ……4分

(II)解法一:三人中恰好有兩個(gè)買到同一只股票的概率.……9分

由(I)知,三人恰好買到同一只股票的概率為,所以三人中至少有兩人買到同一只股票的概率。  ……12分

  • <style id="dpmhv"><strong id="dpmhv"></strong></style>

     

    20.證明:(I)因?yàn)榈酌鍭BCD是菱形,∠ABC=60°,

    所以AB=AD=AC=a,  在△PAB中,

    由PA2+AB2=2a2=PB2   知PA⊥AB.

    同理,PA⊥AD,所以PA⊥平面ABCD…………3分

    文本框:  (II)解法一:作EG//PA交AD于G,

    由PA⊥平面ABCD. 知EG⊥平面ABCD.

    作GH⊥AC于H,連結(jié)EH,則EH⊥AC,∠EHG即為二面角的

    平面角,設(shè)為.

    又PE : ED=2 : 1,所以

    從而    ……………7分

    解法二:以A為坐標(biāo)原點(diǎn),直線AD、AP分別為y軸、

    z軸,過(guò)A點(diǎn)垂直平面PAD的直線為x軸,建立空間直角坐標(biāo)系如圖.由題設(shè)條件,相關(guān)各點(diǎn)的坐標(biāo)分別為

    所以 設(shè)二面角E-AC-D的平面角為,并設(shè)平面EAC的一個(gè)法向量是

    平面ACD的一個(gè)法向量取……………7分

    (Ⅲ)解法一:設(shè)點(diǎn)F是棱PC上的點(diǎn),如上述方法建立坐標(biāo)系.

           令  , 得

    解得      即 時(shí),

    亦即,F(xiàn)是PC的中點(diǎn)時(shí),、共面.

    又  BF平面AEC,所以當(dāng)F是棱PC的中點(diǎn)時(shí),BF//平面AEC…………12分

      <table id="dpmhv"><xmp id="dpmhv"></xmp></table>

        (證法一) 取PE的中點(diǎn)M,連結(jié)FM,則FM//CE.  ①

        由   知E是MD的中點(diǎn).

        連結(jié)BM、BD,設(shè)BDAC=O,則O為BD的中點(diǎn).

        所以  BM//OE.  ②

        由①、②知,平面BFM//平面AEC.

        又  BF平面BFM,所以BF//平面AEC.

        (證法二)因?yàn)?nbsp;

                 

        所以  、共面.又 BF平面ABC,從而BF//平面AEC. ……12分

         

        21.解:(I)

        ,又

         ,

                                         …… 4分

        (II)

        ,其過(guò)點(diǎn) 

                                             …… 7分

        (Ⅲ)由(2)知,

        、、  

         

        ①當(dāng)。

        ②當(dāng)時(shí),

        、 

        所以直線AB的方程為                       …… 12分

        22.(理科)(Ⅰ)由已知條件代入,數(shù)形結(jié)合易知y=lnx與y=的交點(diǎn)為A(α,),y=ex與y=的交點(diǎn)為B(β,);由KAB= ―1,易知αβ=2009           …………4分

        (Ⅱ)設(shè)=,則

        , 在區(qū)間(1,)上是減函數(shù)    又∵

        ,即,

        ∴在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方         …9分

        (Ⅲ)當(dāng)時(shí),左邊=,右邊=,不等式成立;

        當(dāng)時(shí),

                     =

        由已知,  ∴

        .                  ………………………………14分

        (文科)解:(Ⅰ)當(dāng)cosθ=0時(shí),函數(shù)f(x)=4x3+在R上遞增,故無(wú)極值. …3分

        (Ⅱ)函數(shù)f、(x)=12x2-6xcosθ,令f、(x)=0,得x=0或x=cosθ

        由于0≤θ≤及(1)結(jié)論,f極小(x)=f(cosθ)=-cos3θ+>0,

        ∴0<cosθ<,而0≤θ≤,∴θ的取值范圍是(,)!7分

        (Ⅲ)f(x)在區(qū)間(2a-1,a)是增函數(shù),則或,

        由得 a≤0,又∵θ∈(,),∴要使2a-1≥恒成立,

        即要2a-1≥,即a≥,由,得≤a<1,

        ∴實(shí)數(shù)a的取值范圍是(-∞,0]∪[,1) …14分


        同步練習(xí)冊(cè)答案