(理)甲袋中有3個白球和4個黑球.乙袋中有5個白球和4個黑球.現(xiàn)在從甲.乙兩袋中各取出2個球.(I)求取得的4個球均是白球的概率, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)袋子中有質(zhì)地、大小完全相同的4個球,編號分別為1,2,3,4.甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,若兩個編號的和為奇數(shù)算甲贏,否則算乙贏.記基本事件為,其中分別為甲、乙摸到的球的編號。

(1)列舉出所有的基本事件,并求甲贏且編號的和為5的事件發(fā)生的概率;

(2)比較甲勝的概率與乙勝的概率,并說明這種游戲規(guī)則是否公平。(無詳細解答過程,不給分)

(3)   如果請你猜這兩球的號碼之和,猜中有獎.猜什么數(shù)獲獎的可能性大?說明理由.

 

查看答案和解析>>

(本小題滿分12分)甲乙兩人各有個材質(zhì)、大小、形狀完全相同的小球,甲的

小球上面標(biāo)有五個數(shù)字,乙的小球上面標(biāo)有五個數(shù)字.把各自的小球放

入兩個不透明的口袋中,兩人同時從各自的口袋中隨機摸出個小球.規(guī)定:若甲摸出的小

球上的數(shù)字是乙摸出的小球上的數(shù)字的整數(shù)倍,則甲獲勝,否則乙獲勝.

(1)寫出基本事件空間;

(2)你認為“規(guī)定”對甲、乙二人公平嗎?說出你的理由.

 

查看答案和解析>>

(本小題滿分12分)袋子中有質(zhì)地、大小完全相同的4個球,編號分別為1,2,3,4.甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,若兩個編號的和為奇數(shù)算甲贏,否則算乙贏.記基本事件為,其中分別為甲、乙摸到的球的編號。
(1)列舉出所有的基本事件,并求甲贏且編號的和為5的事件發(fā)生的概率;
(2)比較甲勝的概率與乙勝的概率,并說明這種游戲規(guī)則是否公平。(無詳細解答過程,不給分)
(3)  如果請你猜這兩球的號碼之和,猜中有獎.猜什么數(shù)獲獎的可能性大?說明理由.

查看答案和解析>>

(理)(本小題滿分12分)

    口袋里裝有大小相同的4個紅球和8個白球,甲、乙兩人依規(guī)則從袋中有放回摸球,每次摸出一個球,規(guī)則如下:若一方摸出一個紅球,則此人繼續(xù)下一次摸球;若一方摸出一個白球,則由對方接替下一次摸球,且每次摸球彼此相互獨立,并由甲進行第一次摸球;求在前三次摸球中,甲摸得紅球的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

(理)(本小題滿分12分)
口袋里裝有大小相同的4個紅球和8個白球,甲、乙兩人依規(guī)則從袋中有放回摸球,每次摸出一個球,規(guī)則如下:若一方摸出一個紅球,則此人繼續(xù)下一次摸球;若一方摸出一個白球,則由對方接替下一次摸球,且每次摸球彼此相互獨立,并由甲進行第一次摸球;求在前三次摸球中,甲摸得紅球的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

C

A

B

A

C

B

理D 文B

D

理D 文C

二.填空題

13.(理)-1;(文) (-1,1)∪(2,+∞).         14. 90.

15. ;                                     16. (理)x+2y-3=0; (文).

三.解答題

17.  解:(I)平移以后得

,又關(guān)于對稱

, *

當(dāng)且僅當(dāng)時取最大值,

所以,取得最大值時的集合為.…………6分

(II)的最小正周期為; ,

在[上的值域為.…………12分

18.解:(I)當(dāng)n∈N時有:=2-3n,   ∴=2-3(n+1),

兩式相減得:=2-2-3   ∴=2+3。 ……3分

+3=2(+3)。

=2-3,   ∴=3, +3=6≠0   ……4分

∴數(shù)列{+3}是首項6,公比為2的等比數(shù)列.從而c=3.  ……6分

 (II)由(1)知:+3=,  ∴-3.    ………8分

(Ⅲ)假設(shè)數(shù)列{}中是否存在三項,,,(r<s<t),它們可以構(gòu)成等差數(shù)列,

<<,   ∴只能是=2,

∴(-3)+(-3)=2(-3)

.∴1+. 

 ∵r<s<t,r、s、t均為正整數(shù),∴式左邊為奇數(shù)右邊為偶數(shù),不可能成立.

因此數(shù)列{}中不存在可以構(gòu)成等差數(shù)列的三項.  ………12分

19. (理)解:設(shè)從甲袋中取出個白球的事件為,從乙袋中取出個白球的事件為其中=0,1,2,則,.

(I),,

所以………………………..6分

(II)分布列是

0

1

2

3

4

P

……………12分

(文) 19.(I)三人恰好買到同一只股票的概率。  ……4分

(II)解法一:三人中恰好有兩個買到同一只股票的概率.……9分

由(I)知,三人恰好買到同一只股票的概率為,所以三人中至少有兩人買到同一只股票的概率。  ……12分

 

20.證明:(I)因為底面ABCD是菱形,∠ABC=60°,

所以AB=AD=AC=a,  在△PAB中,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD…………3分

文本框:  (II)解法一:作EG//PA交AD于G,

由PA⊥平面ABCD. 知EG⊥平面ABCD.

作GH⊥AC于H,連結(jié)EH,則EH⊥AC,∠EHG即為二面角的

平面角,設(shè)為.

又PE : ED=2 : 1,所以

從而    ……………7分

解法二:以A為坐標(biāo)原點,直線AD、AP分別為y軸、

z軸,過A點垂直平面PAD的直線為x軸,建立空間直角坐標(biāo)系如圖.由題設(shè)條件,相關(guān)各點的坐標(biāo)分別為

所以 設(shè)二面角E-AC-D的平面角為,并設(shè)平面EAC的一個法向量是

平面ACD的一個法向量取,……………7分

(Ⅲ)解法一:設(shè)點F是棱PC上的點,如上述方法建立坐標(biāo)系.

       令  , 得

解得      即 時,

亦即,F(xiàn)是PC的中點時,、共面.

又  BF平面AEC,所以當(dāng)F是棱PC的中點時,BF//平面AEC…………12分

<style id="zsf5o"><fieldset id="zsf5o"></fieldset></style>
    <sup id="zsf5o"></sup><ol id="zsf5o"><source id="zsf5o"></source></ol>

      <li id="zsf5o"></li>

      (證法一) 取PE的中點M,連結(jié)FM,則FM//CE.  ①

      由   知E是MD的中點.

      連結(jié)BM、BD,設(shè)BDAC=O,則O為BD的中點.

      所以  BM//OE.  ②

      由①、②知,平面BFM//平面AEC.

      又  BF平面BFM,所以BF//平面AEC.

      (證法二)因為 

               

      所以  、、共面.又 BF平面ABC,從而BF//平面AEC. ……12分

       

      21.解:(I)

      ,又 ,

       ,

                                       …… 4分

      (II)

      ,其過點 

                                           …… 7分

      (Ⅲ)由(2)知、,

      、、  

       

      ①當(dāng)。

      ②當(dāng)時,

      、 

      所以直線AB的方程為                       …… 12分

      22.(理科)(Ⅰ)由已知條件代入,數(shù)形結(jié)合易知y=lnx與y=的交點為A(α,),y=ex與y=的交點為B(β,);由KAB= ―1,易知αβ=2009           …………4分

      (Ⅱ)設(shè)=,則

      , 在區(qū)間(1,)上是減函數(shù)    又∵

      ,即,

      ∴在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方         …9分

      (Ⅲ)當(dāng)時,左邊=,右邊=,不等式成立;

      當(dāng)時,

                   =

      由已知,  ∴

      .                  ………………………………14分

      (文科)解:(Ⅰ)當(dāng)cosθ=0時,函數(shù)f(x)=4x3+在R上遞增,故無極值. …3分

      (Ⅱ)函數(shù)f、(x)=12x2-6xcosθ,令f、(x)=0,得x=0或x=cosθ

      由于0≤θ≤及(1)結(jié)論,f極小(x)=f(cosθ)=-cos3θ+>0,

      ∴0<cosθ<,而0≤θ≤,∴θ的取值范圍是(,)!7分

      (Ⅲ)f(x)在區(qū)間(2a-1,a)是增函數(shù),則或,

      由得 a≤0,又∵θ∈(,),∴要使2a-1≥恒成立,

      即要2a-1≥,即a≥,由,得≤a<1,

      ∴實數(shù)a的取值范圍是(-∞,0]∪[,1) …14分


      同步練習(xí)冊答案