題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
一 、選擇題
1.C. 2.A. 3.A. 4.A. 5.A. 6.C. 7.A. 8.A. 9.C. 10.D. 11.C.12.D.
一、 填空題
13.. 14.2. 15.16. 16.13.
三、解答題
17.(理科) (1)由(1+tanA)(1+tanB)=2,得
tanA+tanB=1-tanAtanB,
即tan(A+B)=1.
∵A、B為△ABC內(nèi)角, ∴A+B=. 則 C=(定值).
(2)已知△ABC內(nèi)接于單位圓, ∴△ABC外接圓半徑R=1.
∴由正弦定理得:,,.
則△ABC面積S===
==
==.
∵ 0<B<, ∴.
故 當(dāng)時,△ABC面積S的最大值為.
(文科)。1),
,,,∴ .
∴ 向量和的夾角的大小為.
(2).
以和為鄰邊的平行四邊形的面積,
據(jù)此猜想,的幾何意義是以、為鄰邊的平行四邊形的面積.
18. (1)學(xué)生甲恰好抽到3道歷史題,2道地理題的概率為
.
(2)若學(xué)生甲被評為良好,則他應(yīng)答對5道題或4道題
而答對4道題包括兩種情況:①答對3道歷史題和1道地理(錯一道地理題);②答對2道歷史題和2道地理題(錯一道歷史題)。
設(shè)答對5道記作事件A;
答對3道歷史題,1道地理題記作事件B;
答對2道歷史題,2道地理題,記作事件C;
,
,
.
∴甲被評為良好的概率為:
.
19. (1)延長AC到G,使CG=AC,連結(jié)BG、DG,E是AB中點,.
故直線BG和BD所成的銳角(或直角)就是CE和BD所成的角.
(2)設(shè)C到平面ABD的距離為h
20. (1).
(2) 由(1)知:,故在是增函數(shù).
又對于一切恒成立.
由定理知:存在
由(1)知:
由的一般性知:.
21. (1)以中點為原點,所在直線為軸,建立平面直角坐標(biāo)系,則.
設(shè),由得,此即點的軌跡方程.
(2)將向右平移一個單位,再向下平移一個單位后,得到圓,
依題意有.
(3)不妨設(shè)點在的上方,并設(shè),則,
所以,由于且,
故.
22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x.
∵f(x)是奇函數(shù),g(x)是偶函數(shù),∴-f(x)+g(x)=a-x .
∴f(x)=,g(x)=.
⑵是R上的減函數(shù),
∴y=f -1(x)也是R上的減函數(shù).
又
⑶
n>2,當(dāng)上是增函數(shù).是減函數(shù);
上是減函數(shù).是增函數(shù).
(文科) (1)∵函數(shù)在和時取得極值,∴-1,3是方程的兩根,
∴
(2),當(dāng)x變化時,有下表
x
(-∞,-1)
-1
(-1,3)
3
(3,+∞)
f’(x)
+
0
-
0
+
f(x)
ㄊ
Max
c+5
ㄋ
Min
c-27
ㄊ
而時f(x)的最大值為c+54.
要使f(x)<2|c|恒成立,只要c+54<2|c|即可.
當(dāng)c≥0時c+54<
當(dāng)c<0時c+54<-
∴c∈(-∞,-18)∪(54,+∞).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com