4.右圖是一個樣本容量為50的樣本頻率分布直方圖.據(jù)此估計數(shù)據(jù)落在[15.5.24.5]的概率約為A.36%B.46%C.56%D.66% 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)某工廠有120名工人,其年齡都在20~60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分組,其頻率分布直方圖如右圖所示,工廠為了開發(fā)新產(chǎn)品,引進了新的生產(chǎn)設(shè)備,要求每個工人都要參加A、B兩項培訓,培訓結(jié)束后進行結(jié)業(yè)考試,已知各年齡段兩項培訓結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示,假設(shè)兩項培訓是相互獨立的,結(jié)業(yè)考試也互不影響.
年齡分組 A項培訓成績優(yōu)秀人數(shù) B項培訓成績優(yōu)秀人數(shù)
[20,30) 30 18
[30,40) 36 24
[40,50) 12 9
[50,60] 4 3
(1)若用分層抽樣法從全廠工人中抽取一個容量為40的樣本,求各年齡段應分別抽取的人數(shù),并估計全廠工人的平均年齡;
(2)隨機從年齡段[20,30)和[30,40)中各抽取1人,設(shè)這兩人中A、B兩項培訓結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

某工廠有120名工人,其年齡都在20~60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分組,其頻率分布直方圖如右圖所示,工廠為了開發(fā)新產(chǎn)品,引進了新的生產(chǎn)設(shè)備,要求每個工人都要參加A、B兩項培訓,培訓結(jié)束后進行結(jié)業(yè)考試,已知各年齡段兩項培訓結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示,假設(shè)兩項培訓是相互獨立的,結(jié)業(yè)考試也互不影響.
年齡分組A項培訓成績優(yōu)秀人數(shù)B項培訓成績優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分層抽樣法從全廠工人中抽取一個容量為40的樣本,求各年齡段應分別抽取的人數(shù),并估計全廠工人的平均年齡;
(2)隨機從年齡段[20,30)和[30,40)中各抽取1人,設(shè)這兩人中A、B兩項培訓結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

某工廠有120名工人,其年齡都在20~60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分組,其頻率分布直方圖如右圖所示,工廠為了開發(fā)新產(chǎn)品,引進了新的生產(chǎn)設(shè)備,要求每個工人都要參加A、B兩項培訓,培訓結(jié)束后進行結(jié)業(yè)考試,已知各年齡段兩項培訓結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示,假設(shè)兩項培訓是相互獨立的,結(jié)業(yè)考試也互不影響.
年齡分組A項培訓成績優(yōu)秀人數(shù)B項培訓成績優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分層抽樣法從全廠工人中抽取一個容量為40的樣本,求各年齡段應分別抽取的人數(shù),并估計全廠工人的平均年齡;
(2)隨機從年齡段[20,30)和[30,40)中各抽取1人,設(shè)這兩人中A、B兩項培訓結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

某工廠有120名工人,其年齡都在20~60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分組,其頻率分布直方圖如右圖所示,工廠為了開發(fā)新產(chǎn)品,引進了新的生產(chǎn)設(shè)備,要求每個工人都要參加A、B兩項培訓,培訓結(jié)束后進行結(jié)業(yè)考試,已知各年齡段兩項培訓結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示,假設(shè)兩項培訓是相互獨立的,結(jié)業(yè)考試也互不影響.
年齡分組A項培訓成績優(yōu)秀人數(shù)B項培訓成績優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分層抽樣法從全廠工人中抽取一個容量為40的樣本,求各年齡段應分別抽取的人數(shù),并估計全廠工人的平均年齡;
(2)隨機從年齡段[20,30)和[30,40)中各抽取1人,設(shè)這兩人中A、B兩項培訓結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100ml(不含80)之間,屬于酒后駕車;在80mg/100ml(含80)以上時,屬醉酒駕車,對于酒后駕車和醉酒駕車的駕駛員公安機關(guān)將給予不同程度的處罰.
據(jù)《法制晚報》報道,2010年8月1日至8月28日,某市交管部門共抽查了1000輛車,查出酒后駕車和醉酒駕車的駕駛員80人,右圖是對這80人血液中酒精含量進行檢測所得結(jié)果的頻率分布直方圖.
精英家教網(wǎng)
(Ⅰ)根據(jù)頻率分布直方圖完成下表:
酒精含量
(單位:mg/100ml)
[20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
人數(shù)
(Ⅱ)根據(jù)上述數(shù)據(jù),求此次抽查的1000人中屬于醉酒駕車的概率;
(Ⅲ)若用分層抽樣的方法從血液酒精濃度在[70,90)范圍內(nèi)的駕駛員中抽取一個容量為5的樣本,并將該樣本看成一個總體,從中任取2人,求恰有1人屬于醉酒駕車的概率.

查看答案和解析>>

一、選擇題:本答題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的,把它選出來填涂在答題卡上。

1.A

2.D    對“若”的否定已經(jīng)不是“四種命題”中的任何一種,而是表示“合取”命題;且非,即反設(shè)命題的結(jié)論不成立為非,選D。

3.B    因為,所以,當時,分母最小,從而最大為2,選B。

4.C

5.B    設(shè)等差數(shù)列的前三項為(其中),則

于是它的首項是2,選B

6.D    因為的反函數(shù)的圖像經(jīng)過點,所以函數(shù)的圖像經(jīng)過點,于是,解得,選D

7.D    在直角坐標系中較準確地作出點A、B、C,并結(jié)合代值驗證,可知A、C兩點的坐標不滿足選擇支D的解析式,選D。

8.C    因為是定義在R上的奇函數(shù),所以,又,故函數(shù)的周期為4,所以,選C

9.A    函數(shù)的定義域為(0,+),當≥1時,≥0,有;當時,,有,選A。

10.B    根據(jù)圖像可知,當時,函數(shù)圖像從左到右是上升的,表明對數(shù)函數(shù)是增函數(shù),∴a、b均大于1,排除C、D。于是取=2,得,有

,選B.

11.A

12.C    設(shè),則B,有

,∴。由于A、B兩點在函數(shù)的圖象上,則=1,∴,而點A又在函數(shù)的圖像上,∴,得,有,于是,選C。

13.

14.原式=

15.由圖知車速小于90km/h的汽車總數(shù)的頻率之和為(0.01+0.02+0.04)×10=0.7,∴車速不小于90km/h的汽車總數(shù)的頻率之和為1-0.7=0.3。因此在這一時段內(nèi)通過該站的車速不小于90km/h的汽車有1000×0.3=300輛。

16.(1)當時,

(2)當時,

(3)當時,

所以,在區(qū)間上,當時函數(shù)取得最小值

 

三、解答題:本答題共6小題,共74分,解答應寫出文字說明、證明過程或驗算步驟。

17.(本題滿分12分)

解法一 原不等式等價于

                    

                                                   ………………12分

解法二 原不等式等價于

說明  本題是教材第一冊上頁習題1.5第5題:解不等式的改變,這是關(guān)于的二次雙連不等式,若轉(zhuǎn)化為兩個二次不等式組成的不等式組來解時,只要善于正確因式分解,數(shù)軸標根,也能快速解決。

18.∵,∴是奇函數(shù)。

,當時,是減函數(shù),

在(-1,1)內(nèi)是減函數(shù).                                   …………8分

.

故編號為①③的結(jié)論正確,編號為②的結(jié)論不正確                        ……12分

事實上,還有∵,∴

本題是教材85頁4題、99頁例3、101頁6、7題102頁1題的綜合與改編。

19.(本題滿分12分)

設(shè)表示每臺的利潤,y表示周銷售量,則經(jīng)過了點(20,0),(0,35),

解得                     ………………4分

,其中

因此,商店一周中所獲利潤總額為:

每臺利潤×銷售量=

                   =                ………8分

由于y是正整數(shù),所以當周銷售量為y=17或18時,利潤總額最大,為元,此時元或10.3元。               ………………12分

20.甲種水稻的平均畝產(chǎn)量為

乙種水稻的平均畝產(chǎn)量為

表明兩種水稻的平均畝產(chǎn)量相等。                                ……………6分

其方差為

即有 >,這說明乙種水稻其畝產(chǎn)量較為穩(wěn)定……12分

21.(本題滿分12分)

(1)延長FE與AB交于點P,則

∵EP//BC,∴,

,即,∴,                  …………2分

在直角三角形AEP中,,,

由勾股定理,得  (*)

。                     ………………6分

  ∴(*)式成立的充要條件是,

所以y與x的函數(shù)關(guān)系式為,        ……8分

(2)因為,等號當且僅當,即時取得,                                          ………10分

       所以正方形的面積時取得最大值………12分

       若由,

       所以,

       等式右端分子有理化,得

       ∴

整理,得的函數(shù)關(guān)系式為

22.。                      ………………2分

,則,知單調(diào)遞減,而,∴

,令,則

,則只需考慮的情況:

(1)當,即時,

時,,則

時,,則

極大值。                      …9分

(2)當時,∵,∴,

,知是增函數(shù),∴    ……12分

綜上所述,當時,的最大值為0;當,時,的最大值為;當時,的最大值為                  ……14分


同步練習冊答案