a 為常數(shù).求函數(shù)的最大值. 查看更多

 

題目列表(包括答案和解析)

.(本小題滿分14分)a 為常數(shù),求函數(shù)的最大值。

查看答案和解析>>

(本小題滿分14分)a 為常數(shù),求函數(shù)的最大值。

查看答案和解析>>

在函數(shù)的圖象上有A、B兩動點,滿足AB∥x軸,點M(1,m)(m為常數(shù),m>3)是三角形ABC的邊BC的中點,設(shè)A點橫坐標(biāo)t,△ABC的面積為f (t).

       (1) 求f (t)的解析表達(dá)式;

       (2) 若f (t)在定義域內(nèi)為增函數(shù),試求m的取值范圍;

       (3) 是否存在m使函數(shù)f (t)的最大值18?若存在,試求出m的值;若不存在,請說明理由。

查看答案和解析>>

設(shè)函數(shù)y=f(x)在區(qū)間D上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間D上的導(dǎo)函數(shù)為g(x)。若在區(qū)間D上,g(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間D上為“凸函數(shù)”。已知實數(shù)m是常數(shù),
(Ⅰ)若y=f(x)在區(qū)間[0,3]上為“凸函數(shù)”,求m的取值范圍;
(Ⅱ)若對滿足|m|≤2的任何一個實數(shù)m,函數(shù)f(x)在區(qū)間(a,b)上都為“凸函數(shù)”,求b-a的最大值。

查看答案和解析>>

設(shè)函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),a,b為常數(shù),曲線y=f(x)在(1,f(1))處的切線方程為x+y=1。
(1)求a,b的值;
(2)求函數(shù)f(x)的最大值;
(3)證明:f(x)<。

查看答案和解析>>

一、選擇題:本答題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的,把它選出來填涂在答題卡上。

1.A

2.D    對“若”的否定已經(jīng)不是“四種命題”中的任何一種,而是表示“合取”命題;且非,即反設(shè)命題的結(jié)論不成立為非,選D。

3.B    因為,所以,當(dāng)時,分母最小,從而最大為2,選B。

4.C

5.B    設(shè)等差數(shù)列的前三項為(其中),則

于是它的首項是2,選B

6.D    因為的反函數(shù)的圖像經(jīng)過點,所以函數(shù)的圖像經(jīng)過點,于是,解得,選D

7.D    在直角坐標(biāo)系中較準(zhǔn)確地作出點A、B、C,并結(jié)合代值驗證,可知A、C兩點的坐標(biāo)不滿足選擇支D的解析式,選D。

8.C    因為是定義在R上的奇函數(shù),所以,又,故函數(shù)的周期為4,所以,選C

9.A    函數(shù)的定義域為(0,+),當(dāng)≥1時,≥0,有;當(dāng)時,,有,選A。

10.B    根據(jù)圖像可知,當(dāng)時,函數(shù)圖像從左到右是上升的,表明對數(shù)函數(shù)是增函數(shù),∴a、b均大于1,排除C、D。于是取=2,得,有

,選B.

11.A

12.C    設(shè),則B,有

,∴。由于A、B兩點在函數(shù)的圖象上,則=1,∴,而點A又在函數(shù)的圖像上,∴,得,有,于是,選C。

13.

14.原式=

15.由圖知車速小于90km/h的汽車總數(shù)的頻率之和為(0.01+0.02+0.04)×10=0.7,∴車速不小于90km/h的汽車總數(shù)的頻率之和為1-0.7=0.3。因此在這一時段內(nèi)通過該站的車速不小于90km/h的汽車有1000×0.3=300輛。

16.(1)當(dāng)時,

(2)當(dāng)時,

(3)當(dāng)時,

所以,在區(qū)間上,當(dāng)時函數(shù)取得最小值

 

三、解答題:本答題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或驗算步驟。

17.(本題滿分12分)

解法一 原不等式等價于

                    

                                                   ………………12分

解法二 原不等式等價于

說明  本題是教材第一冊上頁習(xí)題1.5第5題:解不等式的改變,這是關(guān)于的二次雙連不等式,若轉(zhuǎn)化為兩個二次不等式組成的不等式組來解時,只要善于正確因式分解,數(shù)軸標(biāo)根,也能快速解決。

18.∵,∴是奇函數(shù)。

,當(dāng)時,是減函數(shù),

在(-1,1)內(nèi)是減函數(shù).                                   …………8分

.

故編號為①③的結(jié)論正確,編號為②的結(jié)論不正確                        ……12分

事實上,還有∵,∴。

本題是教材85頁4題、99頁例3、101頁6、7題102頁1題的綜合與改編。

19.(本題滿分12分)

設(shè)表示每臺的利潤,y表示周銷售量,則經(jīng)過了點(20,0),(0,35),

解得                     ………………4分

,其中

因此,商店一周中所獲利潤總額為:

每臺利潤×銷售量=

                   =                ………8分

由于y是正整數(shù),所以當(dāng)周銷售量為y=17或18時,利潤總額最大,為元,此時元或10.3元。               ………………12分

20.甲種水稻的平均畝產(chǎn)量為

乙種水稻的平均畝產(chǎn)量為

表明兩種水稻的平均畝產(chǎn)量相等。                                ……………6分

其方差為

即有 >,這說明乙種水稻其畝產(chǎn)量較為穩(wěn)定……12分

21.(本題滿分12分)

(1)延長FE與AB交于點P,則

∵EP//BC,∴,

,即,∴,                  …………2分

在直角三角形AEP中,,,

由勾股定理,得  (*)

。                     ………………6分

  ∴(*)式成立的充要條件是,

所以y與x的函數(shù)關(guān)系式為,        ……8分

(2)因為,等號當(dāng)且僅當(dāng),即時取得,                                          ………10分

       所以正方形的面積當(dāng)時取得最大值………12分

       若由,

       所以,

       等式右端分子有理化,得

       ∴,

整理,得的函數(shù)關(guān)系式為

22.。                      ………………2分

,則,知單調(diào)遞減,而,∴

,令,則。

,則只需考慮的情況:

(1)當(dāng),即時,

時,,則

時,,則

極大值。                      …9分

(2)當(dāng)時,∵,∴

,知是增函數(shù),∴    ……12分

綜上所述,當(dāng)時,的最大值為0;當(dāng),時,的最大值為;當(dāng)時,的最大值為                  ……14分


同步練習(xí)冊答案