14ξ乙2829303132P 查看更多

 

題目列表(包括答案和解析)

為了考察甲、乙兩種小麥的長勢,分別從中抽取了6株苗,測得高如下(單位:cm):
11 12 12 10 13 14
12 13 9 13 12 13
由此可以估計,
 
種小麥長得比較整齊.

查看答案和解析>>

甲、乙兩位學生參加某知識競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
12 11 9 8 25 18 23 14
22 25 10 5 13 10 20 15
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加知識競賽,從統(tǒng)計學的角度考慮(即計算平均數(shù)、方差),你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

 某廠用甲、乙兩種產(chǎn)品,已知生產(chǎn)1噸A產(chǎn)品,1噸B產(chǎn)品分別需要的甲乙原料數(shù)、可獲得的利潤及該廠現(xiàn)有原料數(shù)如表:

產(chǎn)品

所需原料

A產(chǎn)品(t)

B產(chǎn)品(t)

現(xiàn)有原料(t)

甲(t)

2

1

14

乙(t)

1

3

18

利潤(萬元)

5

3

 

(1)在現(xiàn)有原料下,A、B產(chǎn)品應各生產(chǎn)多少才能使利潤最大?

(2)如果1噸B產(chǎn)品的利潤增加到20萬元,原來的最優(yōu)解為何改變?

(3)如果1噸B產(chǎn)品的利潤減少1萬元,原來的最優(yōu)解為何改變?

(4)1噸B產(chǎn)品的利潤在什么范圍,原最優(yōu)解才不會改變?

 

 

 

 

查看答案和解析>>

為了考察甲、乙兩種小麥的長勢,分別從中抽取了6株苗,測得高如下(單位:cm):
11 12 12 10 13 14
12 13 9 13 12 13
由此可以估計,______種小麥長得比較整齊.

查看答案和解析>>

 

甲、乙兩種魚的身體吸收汞,當汞的含量超過體重的1.00ppm(即百萬分之一)時,就會對人體產(chǎn)生危害。質(zhì)檢部門對市場中出售的一批魚進行檢測,在分別抽取的10條魚的樣本中,測得汞含量與魚體重的百分比如下:

甲種魚1.31  1.55  1.42  1.35  1.27  1.44  1.28  1.37  1.36  1.14

乙種魚1.01  1.35  0.95  1.16  1.24  1.08  1.17  1.03  0.60  1.11

(Ⅰ)用前兩位數(shù)做莖,畫出樣本數(shù)據(jù)的莖葉圖,并回答下面兩個問題:

(ⅰ)寫出甲、乙兩種魚關于汞分布的一個統(tǒng)計結論.

(ⅱ)經(jīng)過調(diào)查,市場上出售汞超標的魚的原因是這些魚在出售前沒有經(jīng)過檢驗,可否得出每批這兩種魚的平均汞含量都超過1.00ppm?

(Ⅱ)如果在樣本中選擇甲、乙兩種魚各一條做一道菜,(在烹飪過程中汞含量不會發(fā)生改變)

(ⅰ)如果20條魚中的每條魚的重量都相同,那么這道菜對人體產(chǎn)生危害的概率是多少?

(ⅱ)根據(jù)算出的結論,你對政府監(jiān)管部門有什么建議?(提出一條建議即可)

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

一、選擇題:本答題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的,把它選出來填涂在答題卡上。

1.A

2.D    對“若”的否定已經(jīng)不是“四種命題”中的任何一種,而是表示“合取”命題;且非,即反設命題的結論不成立為非,選D。

3.B    因為,所以,當時,分母最小,從而最大為2,選B。

4.C

5.B    設等差數(shù)列的前三項為(其中),則

于是它的首項是2,選B

6.D    因為的反函數(shù)的圖像經(jīng)過點,所以函數(shù)的圖像經(jīng)過點,于是,解得,選D

7.D    在直角坐標系中較準確地作出點A、B、C,并結合代值驗證,可知A、C兩點的坐標不滿足選擇支D的解析式,選D。

8.C    因為分母的極限為零,不能直接使用商的極限運算法則,但這里分子的極限也是零,分子、分母極限之所以為零,就式因為分子、分母都包含有的因子,先把零因式消去,然后再求極限,得

,選C。

9.A    函數(shù)的定義域為(0,+),當≥1時,≥0,有;當時,,有,選A。

10.B    根據(jù)圖像可知,當時,函數(shù)圖像從左到右是上升的,表明對數(shù)函數(shù)是增函數(shù),∴a、b均大于1,排除C、D。于是取=2,得,有

,選B.

11.A    由可得    和。容易驗證,即。而滿足條件:“”的附屬不一定滿足條件:“”,比如取,即。選A.

12.C    設,則B,有

,∴。由于A、B兩點在函數(shù)的圖象上,則=1,∴,而點A又在函數(shù)的圖像上,∴,得,有,于是,選C。

 

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在題中橫線上。

13.等。

14.原式=。

15.由圖知車速小于90km/h的汽車總數(shù)的頻率之和為(0.01+0.02+0.04)×10=0.7,∴車速不小于90km/h的汽車總數(shù)的頻率之和為1-0.7=0.3。因此在這一時段內(nèi)通過該站的車速不小于90km/h的汽車有1000×0.3=300輛。

16.原不等式等價于,令,則,當時,,當時,。故

,∴。

 

三、解答題:本答題共6小題,共74分,解答應寫出文字說明、證明過程或驗算步驟。

17.(本題滿分12分)

解法一 原不等式等價于

                    

                                                   ………………12分

解法二 原不等式等價于

說明  本題是教材第一冊上頁習題1.5第5題:解不等式的改變,這是關于的二次雙連不等式,若轉(zhuǎn)化為兩個二次不等式組成的不等式組來解時,只要善于正確因式分解,數(shù)軸標根,也能快速解決。

18.(本題滿分12分)

(1)當時,等式左邊=,右邊=,所以對n=2時,等式成立!2分

(2)假設當時,等式成立,即,則對n=k+1時,,而)=,表明時,等式成立。              ………………10分

由(1),(2)可知對一切的自然數(shù)等式都成立。                …………12分

19.(本題滿分12分)

表示每臺的利潤,y表示周銷售量,則經(jīng)過了點(20,0),(0,35),

解得                     ………………4分

,其中

因此,商店一周中所獲利潤總額為:

每臺利潤×銷售量=

                   =                ………8分

由于y是正整數(shù),所以當周銷售量為y=17或18時,利潤總額最大,為元,此時元或10.3元。               ………………12分

20.(本小題滿分12分)

(1)由得a=0.18,得b=0.36                           ………………4分

(2)甲種棉花纖維長度的期望為

=28×0.14+29×0.18+30×0.36+31×0.18+32×0.14=30

=28×0.12+29×0.2+30×0.36+31×0.2+32×0.14=30             ………8分

由于>,即乙種棉花纖維長度的方差小些,所以乙種棉花的質(zhì)量較好些(纖維長度比較均勻)………………12分

說明:本題是選修教材17頁8題的改編。

21.(本題滿分12分)

(1)延長FE與AB交于點P,則

∵EP//BC,∴,

,即,∴,                  …………2分

在直角三角形AEP中,,,

由勾股定理,得  (*)

。                     ………………6分

  ∴(*)式成立的充要條件是,

所以y與x的函數(shù)關系式為,        ……8分

(2)因為,等號當且僅當,即時取得,                                          ………10分

       所以正方形的面積時取得最大值………12分

       若由,

       所以

       等式右端分子有理化,得

       ∴

整理,得的函數(shù)關系式為

22.(本題滿分14分)

(1)令

                        ……3分

,∴,故函數(shù)上是增函數(shù)。

處連續(xù),所以,函數(shù)上是增函數(shù)。

時,  ………………6分

(2)令              ……8分

,則,-1,1。                                    …10分

當x變化時,、的變化關系如下表:

(―1,0)

0

(0,1)

1

0

+

0

0

+

極小值

極大值0

極小值

據(jù)此可畫出的簡圖如下,…………12分

故存在,使原方程有4各不同實根!14分


同步練習冊答案