21.函數(shù) 總成立(其中導(dǎo)數(shù).求實(shí)數(shù)m的范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=asinx-x+b在x=
π
3
處有極值(其中a,b都是正實(shí)數(shù)).
(I)求a的值;
(II)對于一切x∈[0,
π
2
],不等式f(x)>sinx+cosx總成立,求b的取值范圍
;
(III)若函數(shù)f(x)在區(qū)間(
m-1
3
π,
2m-1
3
π)
上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

給出下列四個(gè)函數(shù)①f(x)=x2+1; ②f(x)=lnx;③f(x)=e-x;④f(x)=sinx.其中滿足:“對任意x1,x2∈(1,2)(x1≠x2),|f(x1)-f(x2)|<|x1-x2|總成立”的是
 

查看答案和解析>>

(2010•成都一模)已知函數(shù)f(x)=(cx-a)2-2x,a∈R,e為自然對數(shù)的底數(shù).
(I)求函數(shù)f(x)的單調(diào)增區(qū)間;
(II)證明:對任意x∈[0,
1
2
)
,恒有1+2x≤e2x
1
1-2x
成立;
(III)當(dāng)a=0時(shí),設(shè)g(n)=
1
n
[f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)],n∈N*
,證明:對ε∈(0,1),當(dāng)n>
e2-2
ε
時(shí),不等式
e2-3
2
-g(n)<ε
總成立.

查看答案和解析>>

15、設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當(dāng)f(k)≥k2成立時(shí),總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是(  )

查看答案和解析>>

集合A是由具備下列性質(zhì)的函數(shù)f (x)組成的:①函數(shù)f (x)的定義域是[0,+∞);②函數(shù)f(x)的值域是[-2,4);③函數(shù)f(x)在[0,+∞)上是增函數(shù).試分別探究下列兩小題:
(1)判斷函數(shù)f1(x)=
x
-2(x≥0)
,及f2(x)=4-6•(
1
2
)x(x≥0)
是否屬于集合A,并簡要說明理由;
(2)對于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對于任意的x≥0總成立?若不成立,說明理由?若成立,請證明你的結(jié)論.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

D

D

A

C

A

A

D

C

C

A

 

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上。

13.   10          14.  15. ①②③     16. 8

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.

18.(1)x>1或x<-1

   (2)a>1時(shí),

        0<a≤1/2時(shí),不存在

        1/2<a<1時(shí),

19. f (2+x) = f (2-x)   ∴f (4-2x) = f (2x)

0≤2x≤2,即0≤x≤1,無解

2≤2x≤4,即1≤x≤2,由f (x)<f (4-2x)得4/3<x≤2

20.P1=11/12  P2=13/36

21.

22.(1)

(2)

 

 


同步練習(xí)冊答案