B.已知平面.互相垂直.且直線m.n也互相垂直.若 查看更多

 

題目列表(包括答案和解析)

已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程.
(2)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線l1、l2,設(shè)l1與軌跡C交于A、B兩點(diǎn),l2與軌跡C交于D、E兩點(diǎn),求|FA|•|FB|+|FC|•|FD|的最小值.

查看答案和解析>>

已知l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,動(dòng)點(diǎn)B、C分別在l1和l2上,且BC=3
2
,過(guò)A、B、C三點(diǎn)的動(dòng)圓所形成的區(qū)域的面積為
 

查看答案和解析>>

(2012•惠州模擬)已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程.
(2)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線l1、l2,設(shè)l1與軌跡C交于A、B兩點(diǎn),l2與軌跡C交于D、E兩點(diǎn),求|FA|•|FB|+|FC|•|FD|的最小值.

查看答案和解析>>

7、以下四個(gè)命題:
①過(guò)一點(diǎn)有且僅有一個(gè)平面與已知直線垂直;
②若平面外兩點(diǎn)到平面的距離相等,則過(guò)這兩點(diǎn)的直線必平行于該平面;
③兩條相交直線在同一平面內(nèi)的射影必為相交直線;
④兩個(gè)互相垂直的平面,一個(gè)平面內(nèi)的任一直線必垂直于另一平面的無(wú)數(shù)條直線.
其中正確的命題是( 。

查看答案和解析>>

給出下列命題,則其中的真命題是.


  1. A.
    若直線m、n都平行于平面α,則m、n一定不是相交直線
  2. B.
    已知平面a、β互相垂直,且直線m、n也互相垂直,若m⊥α,則n⊥β
  3. C.
    直線m、n在平面α內(nèi)的射影分別是一個(gè)點(diǎn)和一條直線,且m⊥n,則n?α或n∥α
  4. D.
    直線m、n是異面直線,若m∥α,則n必與α相交

查看答案和解析>>

 

1.D  2.C  3.C  4.A  5.A  6.D  7.C  8.D  9.A  10.C 

11.              12. 8       13.    14.   15. 2

16.依題意,即,由函數(shù)為奇函數(shù),

∴對(duì)于定義域內(nèi)的任意x有,即

,即,

解得

17.(1)如圖建立空間直角坐標(biāo)系,設(shè),且

∴SC與AD所成的角為

18.(1)最后甲獲勝的概率為P1,乙獲勝的概率為P2,則,∴甲、乙兩隊(duì)各自獲勝的概率分

(2)乙隊(duì)第五局必須獲勝,前四局為獨(dú)立重復(fù)實(shí)驗(yàn),乙隊(duì)3∶2獲勝的概率為P3,則,∴乙隊(duì)以3∶2獲勝的概率為

19.(1)聯(lián)立兩個(gè)方程,從中消去y得

注意到a>b>c, a+b+c=0,∴a>0, c<0, ∴△>0, 故兩條曲線必交于兩個(gè)不同的交點(diǎn)A、B;

(2)設(shè)的兩個(gè)根為x1、x2,則AB在x軸上的射影的長(zhǎng)

,由此可得

20.(1)設(shè){an}的公差為d,則65=10a1+45d,由a1=2,得d=1,

(2)設(shè)函數(shù)

故當(dāng)x=e時(shí),且當(dāng)0<x<e時(shí),當(dāng)x>e時(shí),

∴函數(shù)在區(qū)間(0,e)內(nèi)單調(diào)遞增,而在區(qū)間上單調(diào)遞減,由及函數(shù)單調(diào)遞增可知函數(shù)與f(x)有相同的單調(diào)性,即在區(qū)間(0,e)內(nèi)單調(diào)遞增,而在區(qū)間上單調(diào)遞減,

注意到,由2<e<3知數(shù)列{bn}的最大項(xiàng)是第2項(xiàng),這一項(xiàng)是

(3)在數(shù)列{cn}不存在這樣的項(xiàng)使得它們按原順序成等比數(shù)列. 事實(shí)上由

. 綜合知即無(wú)法找到這樣的一些連續(xù)的項(xiàng)使其成等比數(shù)列.  

21.(1)若直線l與x軸不垂直,設(shè)其方程為,l與拋物線的交點(diǎn)坐標(biāo)分別為、,由,即,

又由.

,則直線l的方程為,

則直線l過(guò)定點(diǎn)(2,0).

若直線l與x軸垂直,易得 l的方程為x=2,

則l也過(guò)定點(diǎn)(2,0).  綜上,直線l恒過(guò)定點(diǎn)(2,0).

(2)由(1)得,可得 解得k的取值范圍是

(3)假定,則有,如圖,即

由(1)得. 由定義得 從而有

均代入(*)得

,即這與相矛盾.

經(jīng)檢驗(yàn),當(dāng)軸時(shí),. 故


同步練習(xí)冊(cè)答案