題目列表(包括答案和解析)
A.-8≤a<0 B.-8<a<0 C.a<-8 D.a>0
()12名同學合影,站成前排4人后排8人,現(xiàn)攝影師要從后排8人中抽2人調整到前排,若其他人的相對順序不變,則不同調整方法的總數(shù)是( )
A. B. C. D.
()已知全集U={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},則Cu( MN)=
(A) {5,7} (B) {2,4} (C){2.4.8} (D){1,3,5,6,7}
()從魚塘捕得同時放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質量分別是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(單位:千克).依此估計這240尾魚的總質量大約是 ( )
A.300克 B.360千克 C.36千克 D.30千克
()在平面直角坐標系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點A(-2,0),B(6,8),C(8,6),則D點的坐標為___________.
一、選擇題
(1)C (2)B (3)D (4)A (5)B
(6)B (7)B (8)D (9)D (10)A
(11)B (12)C
二、填空題
(13) (14)-6 (15) (16)576
三、解答題
(17)(本小題滿分12分)
解:(I)當時,。
依條件有:
∴
∴的單調增區(qū)間為 6分
(II)設
∴
∴
∴
依條件令,即時,為偶函數(shù)。 12分
(18)(本小題滿分12分)
解:(I)四件產品逐一取出排成一列共有種方法,前兩次取出的產品都是二等品的共有種方法,∴前兩次取出的產品都是二等品的概率為; 6分
(II)的所有可能取值為2,3,4,∴的概率分布為
2
3
4
P
∴ 12分
(19)(本小題滿分12分)
(I)證明:∵ABC-A1B1C1是直三棱柱,
∴CC1⊥平面ABC,∴AC⊥CC1。
∵AC⊥BC,∴AC⊥平面B1BCC1。
∴B1C是AB1在平面B1BCC1上的射影。
∵BC=CC1,∴四邊形B1BCC1是正方形。
∴BC1⊥B1C。根據三垂線定理得
AB1⊥BC1 4分
(II)解:設,作OP⊥AB1于點P
連結BP,∵BO⊥AC,且BO⊥B1C,
∴BO⊥平面AB1C
∴OP是BP在平面AB1C上的射影。
根據三垂線定理得AB1⊥BP。
∴∠OPB是二面角B-AB1-C的平面角
∵
在Rt△POB中,
∴二面角B-AB1-C的正切值為 8分
(III)解:解法1:∵A1C1∥AC,AC平面AB1C,
∴A1C1∥平面AB1C。
∴點A1到平面AB1C的距離與點C1到平面AB1C的距離相等。
∵BC1⊥平面AB1C,
∴線段C1O的長度為點A1到平面AB1C的距離
∴點A1到平面AB1C的距離為a 12分
解法2:連結A1C,有設點A1到平面AB1C的距離為h。
∵B1C1⊥平面ACC1A1,∴?h=,
又
∴,
∴點A1到平面AB1C的距離為 12分
(20)(本小題滿分12分)
解:(I)若在[0,)上是增函數(shù),則時
恒成立
即恒成立
∴
故a的取值范圍是 6分
(II)若上是增函數(shù)
則恒成立
即對所有的均成立
得,與題設矛盾。
∴上不是增函數(shù) 12分
(21)(本小題滿分14分)
解:(I)設E(x,y),則
由已知得
∴
即為點E的軌跡方程。 4分
(II)設橢圓C的方程為,過F1的直線為
,P、Q在橢圓C上,
∴
兩式相減,得 ①
而,
代入①得 ②
由與圓相切,得代入②得,
而橢圓C的方程為 9分
(III)假設存在直線,設MN的中點為
由|TM|=|TN|,∴TP為線段MN的中垂線,其方程為
又設
相減并由
整理得:
又點P(-4k,2)在橢圓的內部
∴,解之得,即k不存在
∴不存在直線l滿足題設條件。 14分
(22)(本小題滿分12分)
解:(I)P2表示從S點到A(或B、C、D),然后再回到S點的概率
所以;
因為從S點沿SA棱經過B或D,然后再回到S點的概率為,
所以 4分
(II)設小蟲爬行n米后恰回到S點的概率為Pn,那么表示爬行n米后恰好沒回到S點的概率,則此時小蟲必在A(或B、C、D)點
所以 8分
(III)由
從而
所以
12分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com