已知函數 圖象的對稱中心與對稱軸, 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=asinx+bcosx的圖象經過點(
π
6
,0),(
π
3
,1)

(I)求實數a、b的值;
(II)若x∈[0,
π
2
]
,求函數f(x)的最大值及此時x的值.

查看答案和解析>>

已知函數f(x)=a0+a1x+a2x2+a3x3+…+anxn(n∈N*),且y=f(x)的圖象經過點(1,n2),n=1,2,…,數列{an}為等差數列.
(I)求數列{an}的通項公式;
(Ⅱ)當n為奇數時,設g(x)=
1
2
[f(x)-f(-x)]
,是否存在自然數m和M,使得不等式m<g(
1
2
)<M
恒成立?若存在,求出M-m的最小值;若不存在,請說明理由.

查看答案和解析>>

已知函數f(x)=
x2+1x-1
,其圖象在點(0,-1)處的切線為l.
(I)求l的方程;
(II)求與l平行的切線的方程.

查看答案和解析>>

已知函數f(x)=x+
2a2x
+alnx.
(I)求f(x)的單調遞增區(qū)間;
(II)設a=1,g(x)=f′(x),問是否存在實數k,使得函數g(x)(均的圖象上任意不同兩點連線的斜率都不小于k?若存在,求k的取值范圍;若不存在,說明理由.

查看答案和解析>>

已知函數f(x)=logax和g(x)=2loga(2x+4),(a>0,a≠1).
(I)若函數y=f(x)與函數y=g(x)的圖象在x=x0處的切線平行,求x0的值;
(II)設F(x)=g(x)-f(x),當x∈[1,4]時,F(xiàn)(x)≥2恒成立,求實數a的取值范圍.

查看答案和解析>>

一、選擇題答題卡

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

D

D

A

B

B

C

B

C

二、填空題:

11. ___2____          12.__29_______          13.___ _____           14___2____                    15. ____ (2,2) ___   (4,402)

三、解答題:

16.(本小題滿分12分)

解:(I).………(2分)

因此,函數圖象的對稱中心為,……………………………………(4分)

對稱軸為.…………………………………………………………(6分) 

(Ⅱ)因為在區(qū)間上為增函數,在區(qū)間上為減函數,又,……(10分)

故函數在區(qū)間上的最大值為,最小值為-1.……………….(12分)

 

17.解:(I)∵z,y可能的取值為2、3、4,

     ∴,

       ∴,且當x=2,y=4,或x=4,y=2時,.……………………  (3分)

       因此,隨機變量的最大值為3.

       ∵有放回地抽兩張卡片的所有情況有3×3=9種,

       ∴

  答:隨機變量的最大值為3,事件“取得最大值”的概率為. ……………(5分)

     (II) 的所有取值為0,1,2,3.

       ∵=0時,只有x=3,y=3這一種情況,

         =1時,有x=2,y=2或x=3,y=2或x=3,y=4或x=4,y=4四種情況,

         =3時,有x=2,y=3或x=4,y=3兩種情況.

       ∴,,………………………………(10分)

則隨機變量的分布列為:

0

1

2

3

P

 

  因此,數學期望.…………………….(12分)

18.(本小題滿分12分)

 

解:(I)∵A1 A⊥平面ABC,BCC平面ABC,

      ∴A1 A⊥BC.

      ∵,AB=AC=2

      ∴∠BAC=60°,∴△ABC為正三角形,即AD⊥BC.…………………(3分)

      又A1 A∩AD=A,∴BC⊥平面A1AD,

      ∵,∴平面A1 AD⊥平面BCC1B1.………………… (6分)

    (Ⅱ)如圖,建立空間直角坐標系,

    則A(0,0,0),B(2,0,0),C(1,,0),

A1(0,0,  ),B1(1,0,),

      ∴

     顯然,平面ABB1A1的法向量為m=(0,1,0),

     設平面BCC1B1的法向量為n=(m,n,1),則

   ∴,

     ,…………………………………………………………………(10分)

     

     即二面角A-BB1-C為arccos…………………………………………(12分)

19.(本小題滿分13分)    ,

 

解:(I)依題意,得, ,…………………………… (3分)

(Ⅱ) 依題意,棋子跳到第n站(2≤n≤99)有兩種可能:第一種,棋子先到第一n-2站,又擲出3或4或5或6,其概率為;第二種,棋子先到第n -1站,又擲出1或2,其概率為………………………………………… (5分)

…………………… (8分)

      (Ⅲ)由(Ⅱ)可知數列(1≤n≤99)是首項為,公比為的等比數列……………………………………………………………………… (10分)

于是有

     因此,玩該游戲獲勝的概率為……………………………… (13分)

 

20.(本小題滿分12分)

    解:(I)由題意知

    是等差數列.…………………………………………2分

   

    ………………………………5分

   (II)由題設知

   

    是等差數列.…………………………………………………………8分

   

    ………………………………10分

    ∴當n=1時,

    當

    經驗證n=1時也適合上式. …………………………12分

 

21.(本題14分)

解:(Ⅰ) 由條件得 ,設直線AB的方程為

 

∴由韋達定理得

從而有

(Ⅱ)拋物線方程可化為

∴切線NA的方程為:

切線NB的方程為:

從而可知N點、Q點的橫坐標相同但縱坐標不同。

 

又由(Ⅰ)知

(Ⅲ)由

由于

        

從而

而p>0,∴1≤p≤2

又p是不為1的正整數

∴p=2

故拋物線的方程:

w.w.w.k.s.5.u.c.o.m         


同步練習冊答案