14.已知函數(shù) .若對于任意的m∈.都存在實數(shù) 使得成立.則實數(shù)的取值范圍為 . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),其中m∈R.

(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;

(2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) = g (x2) 成立,試確定實數(shù)m的取值范圍.

查看答案和解析>>

已知函數(shù),其中m∈R且m≠o.
(1)判斷函數(shù)f1(x)的單調(diào)性;
(2)若m<一2,求函數(shù)f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(3)設(shè)函數(shù)當m≥2時,若對于任意的x1∈[2,+∞),總存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.試求m的取值范圍.

查看答案和解析>>

已知函數(shù),其中m∈R且m≠o.
(1)判斷函數(shù)f1(x)的單調(diào)性;
(2)若m<一2,求函數(shù)f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(3)設(shè)函數(shù)當m≥2時,若對于任意的x1∈[2,+∞),總存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.試求m的取值范圍.

查看答案和解析>>

已知函數(shù)其中m∈R且m≠o.
(1)判斷函數(shù)f1(x)的單調(diào)性;
(2)若m<一2,求函數(shù)f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(3)設(shè)函數(shù)當m≥2時,若對于任意的x1∈[2,+∞),總存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.試求m的取值范圍.

查看答案和解析>>

已知函數(shù)其中m∈R且m≠o.
(1)判斷函數(shù)f1(x)的單調(diào)性;
(2)若m<一2,求函數(shù)f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(3)設(shè)函數(shù)當m≥2時,若對于任意的x1∈[2,+∞),總存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.試求m的取值范圍.

查看答案和解析>>

 1.     2.必要補充分    3.     4.   5. 38    6.①④      7.      8.16 

9.     10 ②   11.-3   12.  13. 13    14.

15 解:(1)將

 

(2)由(1)及

 

16.證明;(1)

 

(2)存在點N為線段AB上靠近點A的四等分點         

 

17.解:(1)∵面C的圓心在第二象限,且與直線y=x相切與坐標原點O,

故可設(shè)圓心為(-m,m)(m>0)

∴圓C的半徑為

令x=0,得 y=0,或y=2m

∵圓C在y軸上截得的弦長為4.

(2)由條件可知

又O,Q在圓C上,所以O(shè),Q關(guān)于直線CF 對稱;

直線CF的方程為

設(shè)

故Q點坐標為

 

18.解:設(shè)公司裁員人數(shù)為x,獲得的經(jīng)濟效益為y元,

則由題意得當

  ①

 

  ②

 

 由①得對稱軸

由②得對稱軸

即當公司應(yīng)裁員數(shù)為,即原有人數(shù)的時,獲得的經(jīng)濟效益最大。

 

19.解:(1)

一般地,

-=2

即數(shù)列{}是以,公差為2的等差數(shù)列。

即數(shù)列{}是首項為,公比為的等比數(shù)列

 

(2)

(3)

注意到對任意自然數(shù)

要對任意自然數(shù)及正數(shù),都有

此時,對任意自然數(shù),

20解:(1­)

方程無解

 

 

②   

 

 

 

 

   

由②

同上可得方程上至少有一解。

綜上得所求的取值范圍為

 

∴所證結(jié)論成立

單調(diào)遞增

單調(diào)遞增

所證結(jié)論成立

 

 

2009屆江蘇省百校高三樣本分析考試

數(shù)學(xué)附加題參考答案

 1.(A)解:(1)取BD的中點O,連結(jié)OE,則 OE為△BDE的外接圓半徑,

∵BE平分∠ABC,∴∠CBE=∠OBE,又    ∵OB=OE,∴∠OBE=∠BEO

∴∠CBE=∠BEO,∴BC∥OE. …………………………………3分

∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線……5分

(2)設(shè)⊙O的半徑為r,則在△AOE中,

OA2=OE2+AE2,即,……7分

∴AO=2OB , 由(1)得OE∥BC,

,

∴EC=3    ………………………………………………………………………………10分

 

 

 

1.(B)解:(1)設(shè)A的一個特征值為,由題意知:

 ……………………3分

 …5分

(2)  ………………………………………7分

……10分

1.(C)解:由題設(shè)知,圓心  ………………………………………………2分

∠CPO=60°,故過P點的切線飛傾斜角為30°    ……………………………………4分

設(shè),是過P點的圓C的切線上的任一點,則在△PMO中,

∠MOP=

由正弦定理得 ……………7分

,即為所求切線的極坐標方程!10分

1.(D)解:由柯西不等式

當且僅當 時取等號 …………………………………………8分

  …………………………………………………………10分

2.解:以O(shè)為原點,分別以O(shè)BOC OA為x軸、y軸、z軸,建立空間直角坐標O-xyz

(如圖),則A(0,0,2), B(2,0,0), C(0,2,0), E(0.1.0)…………2分

 

……………………………4分

 

 

∵異面直線BE與AC所成的角是銳角

故其余弦值是  …………………………………………………………………………5分

(2)

   ………………………………………………………………7分

而平面AEC的一個法向量為

 ………………………………………………9分

由于二面角A-BE-C為鈍角,故其余弦值是   ……………………………………10分

3.解:(1)分別記甲、乙、丙三個同學(xué)復(fù)檢合格為事件A1、A2、A3,E表示事件“恰有一人通過筆試。

                                   ……………………………………………………5分

(2)(法一)因為甲、乙、丙三個同學(xué)通過三關(guān)的概率均為     ……………………7分

所X~B(3,0,3)      ……………………………………………………………………8分

         ……………………………………………………10分

(法二)分別記甲、乙、丙三個同學(xué)經(jīng)過兩次考試后合格為事件A、B、C,

………………………………………………………………7分

   ……………………………………………8分

   …………………………9分

于是,     …………………………10分

 


同步練習(xí)冊答案