設(shè)二次函數(shù)f (x)=x2-x+a(a>0).若f (m)<0.則f (m-1)的值為( A )A.正數(shù) B.負(fù)數(shù) C.非負(fù)數(shù) D.正數(shù).負(fù)數(shù)和零都有可能 查看更多

 

題目列表(包括答案和解析)

(2014•長(zhǎng)寧區(qū)一模)設(shè)二次函數(shù)f(x)=(k-4)x2+kx
 (k∈R)
,對(duì)任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)證明:當(dāng)an∈(0,
1
2
)
時(shí),數(shù)列{an}在該區(qū)間上是遞增數(shù)列;
(3)已知a1=
1
3
,是否存在非零整數(shù)λ,使得對(duì)任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>-
1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)二次函數(shù)f(x)=x2+x+c(c>
1
8
)
的圖象與x軸的左右兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x2-x1的取值范圍為( 。
A、(0,1)
B、(0,
2
2
)
C、(
1
2
,
2
2
)
D、(
2
2
,1)

查看答案和解析>>

設(shè)二次函數(shù)f(x)=(k-4)x2+kx
 &(k∈R)
,對(duì)任意實(shí)數(shù)x,f(x)≤6x+2恒成立;正數(shù)數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)an∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)若已知,求證:數(shù)列{lg(
1
2
-an)+lg2}
是等比數(shù)列.

查看答案和解析>>

設(shè)二次函數(shù)f(x)=(k-4)x2+kx
 &(k∈R)
,對(duì)任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)已知,是否存在非零整數(shù)λ,使得對(duì)任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>(-1)n-12λ+nlog32-1
-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),如果f(x1)=f(x2)(x1≠x2),則f(xl+x2)等于(    )

A.-          B.-                 C.c                  D.

查看答案和解析>>


同步練習(xí)冊(cè)答案