13.質(zhì)點(diǎn)的運(yùn)動(dòng)方程是(其中).則質(zhì)點(diǎn)在t=2時(shí)刻的速度為 . 查看更多

 

題目列表(包括答案和解析)

如右圖所示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)
(1)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說(shuō)明理由;
(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=
1
2
為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+數(shù)學(xué)公式在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2數(shù)學(xué)公式,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=數(shù)學(xué)公式為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

定義在D上的函數(shù),如果滿足:常數(shù),都有≤M成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界.

(Ⅰ)試判斷函數(shù)在[1,3]上是不是有界函數(shù)?請(qǐng)給出證明;

(Ⅱ)若已知質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,要使在上的每一時(shí)刻的瞬時(shí)速度是以M=1為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(本題滿分12)如右圖所示,定義在D上的函數(shù),如果滿足:對(duì),常數(shù)A,都有成立,則稱函數(shù)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)

(1)試判斷函數(shù)上是否有下界?并說(shuō)明理由;

(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,要使在上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

選項(xiàng)

A

C

C

B

D

B

A

D

A

C

D

D

二、填空題

13、45    14、    15、     16、0.94     17、     18、

三、解答題

19、解:f(x)=?(-1)

f(x)=(2x+1)=2?0+1=1

20、:(1)當(dāng)a=2時(shí),A=(2,7),B=(4,5)∴ AB=(4,5)

(2)∵ B=(2a,a2+1),

當(dāng)a<時(shí),A=(3a+1,2)要使BA,必須,此時(shí)a=-1;

當(dāng)a=時(shí),A=,使BA的a不存在;

當(dāng)a>時(shí),A=(2,3a+1)要使BA,必須,此時(shí)1≤a≤3.

綜上可知,使BA的實(shí)數(shù)a的取值范圍為[1,3]∪{-1}

21、解:(1)ξ可能的取值為0,1,2,3.

P(ξ=0)=?==       P(ξ=1)=?+?=

P(ξ=2)=?+?=   P(ξ=3)=?=.

ξ的分布列為

ξ

0

1

2

3

P

數(shù)學(xué)期望為Eξ=1.2.

(2)所求的概率為

p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+=  

22、解:,(2分)

因?yàn)楹瘮?shù)處的切線斜率為-3,

所以,即,         1

。                   2

(1)函數(shù)時(shí)有極值,所以,    3

解123得,

所以.

(2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間上的值恒大于或等于零,

,所以實(shí)數(shù)的取值范圍為.


同步練習(xí)冊(cè)答案