22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

選項(xiàng)

A

C

C

B

D

B

A

D

A

C

D

D

二、填空題

13、45    14、    15、     16、0.94     17、     18、

三、解答題

19、解:f(x)=?(-1)

f(x)=(2x+1)=2?0+1=1

20、:(1)當(dāng)a=2時(shí),A=(2,7),B=(4,5)∴ AB=(4,5)

(2)∵ B=(2a,a2+1),

當(dāng)a<時(shí),A=(3a+1,2)要使BA,必須,此時(shí)a=-1;

當(dāng)a=時(shí),A=,使BA的a不存在;

當(dāng)a>時(shí),A=(2,3a+1)要使BA,必須,此時(shí)1≤a≤3.

綜上可知,使BA的實(shí)數(shù)a的取值范圍為[1,3]∪{-1}

21、解:(1)ξ可能的取值為0,1,2,3.

P(ξ=0)=?==       P(ξ=1)=?+?=

P(ξ=2)=?+?=   P(ξ=3)=?=.

ξ的分布列為

ξ

0

1

2

3

P

數(shù)學(xué)期望為Eξ=1.2.

(2)所求的概率為

p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+=  

22、解:,(2分)

因?yàn)楹瘮?shù)處的切線斜率為-3,

所以,即,         1

。                   2

(1)函數(shù)時(shí)有極值,所以,    3

解123得,

所以.

(2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間上的值恒大于或等于零,

,所以實(shí)數(shù)的取值范圍為.


同步練習(xí)冊(cè)答案