20.已知函數(shù)滿足且有唯一解. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)已知函數(shù)滿足(其中在點(diǎn)處的導(dǎo)數(shù),為常數(shù)).(1)求函數(shù)的單調(diào)區(qū)間;(2)若方程有且只有兩個(gè)不等的實(shí)數(shù)根,求常數(shù);(3)在(2)的條件下,若,求函數(shù)的圖象與軸圍成的封閉圖形的面積.

查看答案和解析>>

(本小題滿分13分)已知函數(shù),數(shù)列滿足

(1)若數(shù)列是常數(shù)列,求t的值;
(2)當(dāng)時(shí),記,證明:數(shù)列是等比數(shù)列,并求出通項(xiàng)公式an.

查看答案和解析>>

(本小題滿分13分)

已知函數(shù),其中請分別解答以下兩小題.

(Ⅰ)若函數(shù)過點(diǎn),求函數(shù)的解析式.

(Ⅱ)如圖,點(diǎn)分別是函數(shù)的圖像在軸兩側(cè)與軸的兩個(gè)相鄰交點(diǎn), 函數(shù)圖像上的一點(diǎn),若滿足,求函數(shù)的最大值.

 

查看答案和解析>>

(本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經(jīng)過點(diǎn)A、B是函數(shù)圖像上的點(diǎn),正半軸上的點(diǎn).

(1) 求的解析式;

(2) 設(shè)為坐標(biāo)原點(diǎn),是一系列正三角形,記它們的邊長是,求數(shù)列的通項(xiàng)公式;

(3) 在(2)的條件下,數(shù)列滿足,記的前項(xiàng)和為,證明:

 

查看答案和解析>>

(本小題滿分13分)

已知函數(shù)

(Ⅰ)求函數(shù)的極大值;

(Ⅱ)若對滿足的任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍(這里是自然對數(shù)的底數(shù));

(Ⅲ)求證:對任意正數(shù)、、,恒有

 

查看答案和解析>>

一. 單項(xiàng)選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

D

A

C

D

B

D

A

B

D

C

二.填空題

11、         12、25           13、         14、

15、29π    

三、解答題:

16、解:(1)

                =…………….4分

的最小正周期為           ……………5分

的對稱中心為      …………….6分

(2)   

 ……………..8分

 

      由     ……………10分   

                     ……………….12分

17、解:(1)五項(xiàng)指標(biāo)檢測相當(dāng)于5次獨(dú)立重復(fù)試驗(yàn),當(dāng)有二項(xiàng)及二項(xiàng)以上不合格時(shí),該批食品不能出廠,故不能出廠的概率為:

        ……………………………….4分

(2)若須五項(xiàng)全部檢測完畢,才能確定能否出廠,則相當(dāng)于前四項(xiàng)檢測中恰有一項(xiàng)不合格的情形,故所求概率為:

   …………………………………..8分

        (3)由(1)知該批食品能出廠的概率為0.74不能出廠的概率為0.26

          故該廠生產(chǎn)一批食品獲利的分布列為

10000

-5000

0.74

0.26

                                                      ….………….10分

獲利的期望為 …………..12分

18、解:(1)由已知

   …………2分

    ∴             ……4分

即所求曲線方程是:                           …………6分

(2)由(1)求得點(diǎn)M(0,1)。顯然直線l與x軸不垂直。

故可設(shè)直線l的方程為y=kx+1 ,設(shè)M, N      …………8分

  消去y得:  解得  

解得:k=±1  ………………11分                             …………12分

∴所求直線的方程為                …………14分

19, 解:解法一:(1)∵BF⊥平面ACE。  ∴BF⊥AF

∵二面角D―AB―E為直二面角。且CB⊥AB。

∴CB⊥平面ABE   ∴CB⊥AE   ∴AE⊥平面BCE           ……………4分

(2)連結(jié)BD交AC交于G,連結(jié)FG

∵正方形ABCD邊長為2!郆G⊥AC  BG=

∵BF⊥平面ACE。  由三垂線定理的逆定理得

FG⊥AC。  ∴∠BGF是二面B―AC―E的平面角              …………7分

由(1)和AE⊥平面BCE

又∵AE=EB

∴在等腰直角三角形AEB中,BE=

又∵Rt△BCE中,

  ∴Rt△BFG中

∴二面角B―AC―E的正弦值等于                        ……………10分

(3)過點(diǎn)E作ED⊥AB交AB于點(diǎn)O,  OE=1

∵二面角D―AB―E為直二面角    ∴EO⊥平面ABCD

設(shè)點(diǎn)D到平面ACE的距離為h。   ∵VD-ACE=VE-ACD

即點(diǎn)D到平面ACE的距離為                          ………………14分

 

20、解:(1)由 有唯一解

  

                                 …………4分

(2)由                 …………6分

  

數(shù)列 是以首項(xiàng)為,公差為的等差數(shù)列          …………8 分

                 ………10分

(3)由       …………12分

=

              

              

                                              …………14分

21、解:2.解:(Ⅰ)由條件得矩陣,

它的特征值為,對應(yīng)的特征向量為;

(Ⅱ),橢圓的作用下的新曲線的方程為.(7分)

3.(坐標(biāo)系與參數(shù)方程)求直線)被曲線所截的弦長,將方程分別化為普通方程:

,………(4分)

……(7分)

 

 

 

 

 


同步練習(xí)冊答案