11. 12. 查看更多

 

題目列表(包括答案和解析)

1
2•4
+
1
3•5
+
1
4•6
+…+
1
(n+1)(n+3)
=
 

查看答案和解析>>

9、12件瓷器中,有10件正品,2件次品,從中任意取出3件,有以下事件:
①3件都是正品;
②至少有1件是次品;
③3件都是次品;
④至少有1件是正品.
其中隨機事件是
①②
;必然事件是
;不可能事件是
(填上相應(yīng)的序號).

查看答案和解析>>

12名職員(其中3名為男性)被平均分配到3個部門,
(1)求此3名男性被分別分到不同部門的概率;
(2)求此3名男性被分到同一部門的概率;
(3)若有一男性被分到指定部門,求其他2人被分到其他不同部門的概率.

查看答案和解析>>

(
1
2
)log
2
8
的值為
1
64
1
64

查看答案和解析>>

(
1
2
)x<4
”是“l(fā)g(x+2)<1”的( 。

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

解答

B

D

A

B

D

B

D

C

D

C

二、填空題:本大題共7小題,每小題4分,共28分

11.        負                                   12.              

13.                                  14.                                

15.       2                                     16.      2125                  

17.                              

三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

18.解:(1)=,得:=,

即:,      …………………………………………………………3分

  又∵0<

=.               …………………………………………………………5分

(2)直線方程為:

,點到直線的距離為:

,    …………………………………………………………9分

 ∴,  …………………………………………………………11分

又∵0<,       

 ∴sin>0,cos<0; …………………………………………………………12分

  

 ∴sin-cos=    ……………14分

19.(Ⅰ)證明:連A1B,D1C.

……2分  

連結(jié),則

,故D1E⊥平面AB1F.     ………………………………………5分

(Ⅱ)由(Ⅰ)知,E為棱BC的中點.

   ………………9分

(Ⅲ).               ………………………11分

中,

 ………………………14分

20. (Ⅰ)證明:令

,總有恒成立.

,總有恒成立.

故函數(shù)是奇函數(shù).              ………………………………………………5分

(Ⅱ) ,

.…………………………………………8分

……………………………………………………………………………10分

(Ⅲ)

……………………………………………………………………………15分

21.解:(Ⅰ)若為等腰直角

三角形,所以有OA=OF2,即b=c .  ………2分

所以     …………5分

   (Ⅱ)由題知

其中,

 …8分

將B點坐標代入,

解得.  ①     ……………………………………………………10分

又由 ② …12分

由①, ②解得,

所以橢圓方程為.     ……………………………………………14分

22.解:  

(Ⅰ)由題意,得

所以,         …………………………………………5分

   (Ⅱ)由(Ⅰ)知,

 

 

-4

(-4,-2)

-2

1

 

+

0

0

+

 

 

極大值

極小值

 

函數(shù)值

-11

 

13

 

 

4

在[-4,1]上的最大值為13,最小值為-11。     …………………10分

(Ⅲ)

.所以存在,使. ……………15分

 

 


同步練習(xí)冊答案