(2)求數(shù)列的前項和. 查看更多

 

題目列表(包括答案和解析)

求數(shù)列的前項和.

查看答案和解析>>

求數(shù)列的前項和.

查看答案和解析>>

求數(shù)列的前項和.

查看答案和解析>>

數(shù)列的前項和

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前項和

 

查看答案和解析>>

(12分)數(shù)列的前項和為

    (1)求數(shù)列的通項公式;

    (2)等差數(shù)列的各項均為正數(shù),其前項和為,,又成等比數(shù)列,求

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空題

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答題

15.解:(Ⅰ)由,根據(jù)正弦定理得,

所以,…………………………………………………………………………………………4分

為銳角三角形得.                 …………………………………………7分

(Ⅱ)根據(jù)余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由題意可知

當(dāng)時, .                   ……3分

當(dāng)時,,亦滿足上式.                            ……5分

∴數(shù)列的通項公式為).                            ……6分

(2)由(1)可知,                                                ……7分

∴數(shù)列是以首項為,公比為的等比數(shù)列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

  • <source id="cac0e"></source>

      ……12分

       

      ……14分

       

       

      18.解:(1)由   …………………2分

      , ……4分

      ,

       

      函數(shù)的單調(diào)區(qū)間如下表:

      (-¥,-

      (-,1)

      1

      (1,+¥)

      0

      0

      ­

      極大值

      ¯

      極小值

      ­

      所以函數(shù)的遞增區(qū)間是(-¥,-)與(1,+¥),遞減區(qū)間是(-,1)。      …9分

      (2)

      當(dāng)時,為極大值,而,則為最大值。

      要使恒成立,只需

      解得。                                        ……………………14分

      19.解:(1)設(shè)所求直線的斜率為,其方程為,代入橢圓方程并化簡得:

                      …………………………2分

              設(shè)直線l與橢圓交于P1x1,y1)、P2x2y2),則

      因為(4,2)是直線l被橢圓所截得的線段的中點,則

      ,解得。         …………………………………………6分

      由點斜式可得l的方程為x+2y-8=0.               ………………………………………8分

      (2)由(1)知,     ………………………10分

             ……………14分

       

       

       

       

      20. 解:設(shè)AN的長為x米(x >2)

                   ∵,∴|AM|=

      ∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

      (1)由SAMPN > 32 得  > 32 ,

               ∵x >2,∴,即(3x-8)(x-8)> 0

               ∴         即AN長的取值范圍是……………………………8分

      (2)令y=,則y′= ……………………………………… 10分

      ∵當(dāng),y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

      ∴當(dāng)x=3時y=取得最大值,即(平方米)

      此時|AN|=3米,|AM|=米      ……………………………………………………… 14分

       

       

       


      同步練習(xí)冊答案