19.(本小題滿分12分)已知向量 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知向量,其中

(1)若,求的值;(2)若,求的值域。

查看答案和解析>>

(本小題滿分12分)

已知向量,其中

(1)若,求的值;

(2)若,求的值域。

查看答案和解析>>

(本小題滿分12分)已知向量,定義(1)求函數(shù)的單調遞減區(qū)間;(2)求函數(shù)的最大值及取得最大值時的x的取值集合。

查看答案和解析>>

(本小題滿分12分)

已知向量,把其中所滿足的關系式記為若函數(shù)為奇函數(shù),且當有最小值  (Ⅰ)求函數(shù)的表達式;(Ⅱ)設滿足如下關系:求數(shù)列的通項公式,并求數(shù)列n項的和.

查看答案和解析>>

(本小題滿分12分)已知向量,,設函數(shù) ,  (1)求的最小正周期與單調遞減區(qū)間。  (2)在中,、、分別是角、、的對邊,若,,的面積為,求的值。

查看答案和解析>>

Ⅰ 選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

 B

C

C

B

C

C

B

A

A

B

 

Ⅱ 非選擇題

二、13.         14.4          15.-2            16.①    

三、解答題:

17.(I)解:

    --------------------------4分

,即時,取得最大值.

因此,取得最大值的自變量x的集合是  -------8分

(Ⅱ)解:

由題意得,即.

因此,的單調增區(qū)間是.-------------------13分

18.⑴∵f (x) ≥x的解集為R

∴x2-(4a+1)x+a2≥0對于x∈R恒成立        -----------------------------------2分

∴△=(4a+1)24a2≤0

  即12 a28a+1≤0             --------------------------------------------------------4分

    (2a+1)(6a+1)≤0

∴?≤a≤?

∴a的取值范圍為[?,?]       ------------------------------------------------------6分

(2)∵,---------------------------------------------------------8分

的對稱軸,知單調遞增

處取得最小值,即---------------------------------------------------11分

    解得  ∵        ∴----------------------13分

19、解:由<0,得

(*)----------------------------------------------------------------------2分

⑴當 a>0時,(*)等價于a>0時,

∴不等式的解為:<x<1--------------------------------------------------------------------5分   

⑵當a=0時,(*)等價于<0即x<1----------------------------------------------------8分

⑶當a<0時,(*)等價于a<0時,

∴   不等式的解為 : x<1或x>-----------------------------------------------------11分

綜上所述:當a>0時,不等式的解集為(,1);當a=0時,不等式的解集為

當a<0時,不等式的解集為∪()-------------------------------12分

20.

---------------------------------------------------------------------------------3分

---------------------------------------------------------------------7分

---------------------------------12分

21.解:(1)由已知

  ,

 

(2)

 橢圓的方程為

22.(1)證明:f(x+y)=f(x)+f(y)(x,y∈R),             ①

令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.

令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,則有0=f(x)+f(-x).即f(-x)=-f(x)對任意x∈R成立,所以f(x)是奇函數(shù).---------------------------------------3分

(2)設

所以f(x)是增函數(shù).----------------------------------------------------6分

(3)解:∵由(2)知f(x) 在R上是單調增函數(shù),又由(1)f(x)是奇函數(shù).

f(k?3)<-f(3-9-2)=f(-3+9+2),  k?3<-3+9+2,

3-(1+k)?3+2>0對任意x∈R成立.

令t=3>0,問題等價于t-(1+k)t+2>0對任意t>0恒成立.

R恒成立.

---------------------------------------------------------------------------12分

 

 


同步練習冊答案