19.(1)證明:數(shù)列是等差數(shù)列.設(shè)公差為.則對恒成立. 查看更多

 

題目列表(包括答案和解析)

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
1
2
nan+an-c
(c是常數(shù),n∈N*),a2=6.
(Ⅰ)求c的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:
1
a1a2
+
1
a2a3
+…+
1
anan+1
1
8

查看答案和解析>>

已知{an}是等差數(shù)列,d為公差且不為0,a1和d均為實(shí)數(shù),它的前n項(xiàng)和記作Sn,設(shè)集合A={(an,
Sn
n
)|n∈N*},B={(x,y)|
1
4
x2-y2=1,x,y∈R}.試問下列結(jié)論是否正確,如果正確,請給予證明;如果不正確,請舉例說明:
(1)若以集合A中的元素作為點(diǎn)的坐標(biāo),則這些點(diǎn)都在同一條直線上;
(2)A∩B至多有一個元素;
(3)當(dāng)a1≠0時,一定有A∩B≠∅.

查看答案和解析>>

數(shù)列{an}是公差為d(d>0)的等差數(shù)列,且a2是a1與a4的等比中項(xiàng),設(shè)Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求證:
Sn
+
Sn+2
=2
Sn+1
;
(2)若d=
1
4
,令bn=
Sn
2n-1
,{bn}的前n項(xiàng)和為Tn,是否存在整數(shù)P、Q,使得對任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,請說明理由.

查看答案和解析>>

設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)證明:數(shù)列是等比數(shù)列;
(2)若,學(xué)科網(wǎng)函數(shù)的圖象在點(diǎn)處的切線在軸上的截距為,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

已知等差數(shù)列{an}的公差為d(d≠0),等比數(shù)列{bn}的公比為q(q>1),設(shè)Sn=a1b1+a2b2+…anbn,Tn=a1b1-a2b2+…+(-1)n-1anbn,n∈N*。
(1)若a1=b1=1,d=2,q=3,求S3的值。
(2)若b1=1,證明:(1-q)S2n-(1+q)T2n=,n∈N*。
(3)若正整數(shù)n滿足2≤n≤q,設(shè)k1,k2,…kn和l1,l2,…ln是1,2,…,n的兩個不同的排列,c1=,c2=,證明c1≠c2。

查看答案和解析>>


同步練習(xí)冊答案