把一枚質(zhì)地均勻六面分別標(biāo)有1.2.3.4.5.6的小正方體投擲兩次.并記第一次出 查看更多

 

題目列表(包括答案和解析)

先后隨機(jī)投擲2枚質(zhì)地均勻正方體骰子(2枚骰子每個(gè)面分別標(biāo)有1,2,3,4,5,6),其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù).設(shè)點(diǎn)P的坐標(biāo)為(x,y).
(1)求點(diǎn)P(x,y)在直線y=x-1上的概率
(2)求點(diǎn)P(x.y)滿足y2<4x的概率.

查看答案和解析>>

先后隨機(jī)投擲2枚質(zhì)地均勻正方體骰子(2枚骰子每個(gè)面分別標(biāo)有1,2,3,4,5,6),其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù).設(shè)點(diǎn)P的坐標(biāo)為(x,y).
(1)求點(diǎn)P(x,y)在直線y=x-1上的概率
(2)求點(diǎn)P(x.y)滿足y2<4x的概率.

查看答案和解析>>

某商店老板設(shè)計(jì)了如下有獎(jiǎng)游戲方案:顧客只要花10元錢,即可參加有獎(jiǎng)游戲一次.游戲規(guī)則如下:在圖示的棋盤中,棋子從M開始沿箭頭方向跳向N,每次只跳一步(一個(gè)箭頭),當(dāng)下一步有方向選擇時(shí),則必須通過擲一次骰子(每個(gè)面分別標(biāo)有1,2,3,4,5,6的正方體玩具)的方法來確定(否則,不必?cái)S骰子)——當(dāng)出現(xiàn)“1”朝上時(shí),沿MD方向跳;當(dāng)出現(xiàn)“2,4,6”朝上時(shí)沿ME的方向跳;當(dāng)出現(xiàn)“3”“5”朝上時(shí),沿MA方向跳.獎(jiǎng)勵(lì)標(biāo)準(zhǔn)如下表:

從M到N所用步數(shù)

2

3

4

獎(jiǎng)金(元)

100

10

5

若該店平均每天有100人次參加游戲,按每月30天計(jì).

(Ⅰ)寫出每位顧客一次游戲后,該店獲利的分布列;

(Ⅱ)該店開展此項(xiàng)游戲每月大約獲利多少元?(精確到1元)

查看答案和解析>>

將兩枚質(zhì)地均勻透明且各面分別標(biāo)有1,2,3,4的正四面體玩具各擲一次,設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則P(B|A)=
1
2
1
2

查看答案和解析>>

先后擲兩枚質(zhì)地均勻的正方體骰子(它的六個(gè)面分別標(biāo)有1、2、3、4、5、6),骰子朝上的面的點(diǎn)數(shù)分別為X和Y,則log2XY=1的概率為

A.               B.              C.              D.

查看答案和解析>>

一. 每小題5分,共60分      DACDB  DACBB   DD

二. 每小題5分,共20分.其中第16題前空2分,后空3分.

13.  60;     14.  ;     15. ;    16.   2,-

三.解答題:本大題共6個(gè)小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

17.(Ⅰ) 

    

(Ⅱ)                (7分)

       (8分)

                      (10分)

18.解:(Ⅰ)記“該人被錄用”的事件為事件A,其對(duì)立事件為,則

(Ⅱ)該生參加測(cè)試次數(shù)ξ的可能取值為2,3,4,依題意得

(10分)

(8分)

(6分)

 

 

分布列為 

2

3

4

p

1/9

4/9

4/9

……………………………….11分

 

 

 

……………..12分       

19. 解:(Ⅰ)依題意 ,,故…1分,     

當(dāng)時(shí), ① 又

②?①整理得:,故為等比數(shù)列…………………3分

…………4分∴…………………………….5分

,即是等差數(shù)列………………….6分

(Ⅱ)由(Ⅰ)知,

…8分.

      …………9分,依題意有,解得…11分

故所求最大正整數(shù)的值為……………………………………………12分

20.

 

 

 

 

 

 

 

 

 

 

解法一圖

解法二圖

 

 

解法一:(1)證明:

………………………….5分

(8分)

 解法二:以C為坐標(biāo)原點(diǎn),射線CA為x軸的正半軸,建立如圖所示的空間直角坐        標(biāo)系C-xyz.依題意有C ,

                      (3分)

(Ⅰ)

    (5分)

  • (12分)

    設(shè)

    變化情況如下表:

     

    (0,1)

    1

    (1,+∞)

    0

    +

    遞減

    0

    遞增

    處有一個(gè)最小值0,即當(dāng)時(shí),>0,∴=0只有一個(gè)解.即當(dāng)時(shí),方程有唯一解………………………6分.

    1. (12分)

      (1分) 依題意又由過兩點(diǎn)A,B的切線相互垂直得

      從而

      即所求曲線E的方程為 y=……………………………………4分

        (Ⅱ)由(Ⅰ)得曲線F方程為,令=0,得曲線F與軸交點(diǎn)是(0,b);令,由題意b≠-1 且Δ>0,解得b<3 且b≠-1.           ………………………………………….6分

      (?)方法一:設(shè)所求圓的一般方程為=0 得這與=0 是同一個(gè)方程,故D=4,.………………….8分.

      =0 得,此方程有一個(gè)根為b+1,代入得出E=?b?1.

      所以圓C 的方程…………………9分

      方法二:①+②得

      (?)方法一:圓C 必過定點(diǎn)(0,1)和(-4,1).………………………11分

      證明如下:將(0,1)代入圓C 的方程,得左邊=0+1+2×0-(b+1)+b=0,右邊=0,

      所以圓C 必過定點(diǎn)(0,1).同理可證圓C 必過定點(diǎn)(-4,1).…………………12分

        方法二:由 圓C 的方程得………………11分

      12分

       

       


      同步練習(xí)冊(cè)答案