已知函數(shù) . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對(duì)任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

一. 每小題5分,共60分      DACDB  DACBB   DD

二. 每小題5分,共20分.其中第16題前空2分,后空3分.

13.  60;     14.  ;     15. ;    16.   2,-

三.解答題:本大題共6個(gè)小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

17.(Ⅰ) 

    

(Ⅱ)                (7分)

       (8分)

                      (10分)

18.解:(Ⅰ)記“該人被錄用”的事件為事件A,其對(duì)立事件為,則

(Ⅱ)該生參加測(cè)試次數(shù)ξ的可能取值為2,3,4,依題意得

(10分)

(8分)

(6分)

 

 

分布列為 

2

3

4

p

1/9

4/9

4/9

……………………………….11分

 

 

 

……………..12分       

19. 解:(Ⅰ)依題意 ,,故…1分,     

當(dāng)時(shí), ① 又

②?①整理得:,故為等比數(shù)列…………………3分

…………4分∴…………………………….5分

,即是等差數(shù)列………………….6分

(Ⅱ)由(Ⅰ)知,

…8分.

      …………9分,依題意有,解得…11分

故所求最大正整數(shù)的值為……………………………………………12分

20.

 

 

 

 

 

 

 

 

 

 

解法一圖

解法二圖

 

 

解法一:(1)證明:

………………………….5分

(8分)

 解法二:以C為坐標(biāo)原點(diǎn),射線CA為x軸的正半軸,建立如圖所示的空間直角坐        標(biāo)系C-xyz.依題意有C ,

                      (3分)

(Ⅰ)

(5分)

(12分)

設(shè)

變化情況如下表:

 

(0,1)

1

(1,+∞)

0

+

遞減

0

遞增

處有一個(gè)最小值0,即當(dāng)時(shí),>0,∴=0只有一個(gè)解.即當(dāng)時(shí),方程有唯一解………………………6分.

  1. <delect id="dqtqm"></delect>

    (12分)

    (1分) 依題意又由過兩點(diǎn)A,B的切線相互垂直得

    從而

    即所求曲線E的方程為 y=……………………………………4分

      (Ⅱ)由(Ⅰ)得曲線F方程為,令=0,得曲線F與軸交點(diǎn)是(0,b);令,由題意b≠-1 且Δ>0,解得b<3 且b≠-1.           ………………………………………….6分

    (?)方法一:設(shè)所求圓的一般方程為=0 得這與=0 是同一個(gè)方程,故D=4,.………………….8分.

    =0 得,此方程有一個(gè)根為b+1,代入得出E=?b?1.

    所以圓C 的方程…………………9分

    方法二:①+②得

    (?)方法一:圓C 必過定點(diǎn)(0,1)和(-4,1).………………………11分

    證明如下:將(0,1)代入圓C 的方程,得左邊=0+1+2×0-(b+1)+b=0,右邊=0,

    所以圓C 必過定點(diǎn)(0,1).同理可證圓C 必過定點(diǎn)(-4,1).…………………12分

      方法二:由 圓C 的方程得………………11分

    12分

     

     


    同步練習(xí)冊(cè)答案