題目列表(包括答案和解析)
(理)(本小題滿分12分)
口袋里裝有大小相同的4個紅球和8個白球,甲、乙兩人依規(guī)則從袋中有放回摸球,每次摸出一個球,規(guī)則如下:若一方摸出一個紅球,則此人繼續(xù)下一次摸球;若一方摸出一個白球,則由對方接替下一次摸球,且每次摸球彼此相互獨立,并由甲進行第一次摸球;求在前三次摸球中,甲摸得紅球的次數(shù)ξ的分布列及數(shù)學期望.
(理)(本小題滿分12分)已知y=f(x)是偶函數(shù),當x>0時,,
且當時,恒成立,求的最小值.
(理)(本小題滿分12分)
直四棱柱中,底面為菱形,且為延長線上的一點,面.
(Ⅰ)求二面角的大。
(Ⅱ)在上是否存在一點,使面?若存在,求的值;不存在,說明理由.
(理)(本小題滿分12分)
為振興旅游業(yè),四川省2009年面向國內(nèi)發(fā)行總量為2 000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡稱銀卡).某旅游公司組織了一個有36名游客的旅游團到四川名勝旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.
(1)在該團中隨機采訪2名游客,求恰有1人持銀卡的概率;
(2)在該團中隨機采訪2名游客,求其中持金卡與持銀卡人數(shù)相等的概率
(理)(本小題滿分12分)已知y=f(x)是偶函數(shù),當x>0時,,
且當時,恒成立,求的最小值.
一、選擇題:(1)-(12)CAADB 。拢粒粒茫摹 。茫
二、填空題:(13) (14) (15) (16)
三、解答題:
(17)解:(1) …………6分
(2) …………8分
時,
當時,
當時,……11分
綜上所述:………………12分
(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨立的,所以恰好有兩家煤礦必須整改的概率是
………………4分
(2)由題設(shè),必須整改的煤礦數(shù)服從二項分布,從而的數(shù)學期望是
,即平均有2.50家煤礦必須整改. ………………8分
(3)某煤礦被關(guān)閉,即煤礦第一次安檢不合格,整改后復查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9,由題意,每家煤礦是否關(guān)閉是相互獨立的,所以5家煤礦都不被關(guān)閉的概率是
從而至少關(guān)閉一家煤礦的概率是 ………………12分
(19)證明:由多面體的三視圖知,四棱錐的底面是邊長為的正方形,側(cè)面是等腰三角形,,
且平面平面.……2分
(1) 連結(jié),則是的中點,
在△中,,………4分
且平面,平面,
∴∥平面 ………6分
(2) 因為平面⊥平面,
平面∩平面,
又⊥,所以,⊥平面,
∴⊥ …………8分
又,,所以△是
等腰直角三角形,
且,即………………10分
又, ∴ 平面,
又平面,
所以 平面⊥平面 ………………12分
(20)解:設(shè)
由
即
,
………………6分
(2)由題意得上恒成立。
即在[-1,1]上恒成立。
設(shè)其圖象的對稱軸為直線,所以上遞減,
故只需,,即………………12分
(21)解:(I)由
所以,數(shù)列 …………6分
(II)由得:
…………(1)
…………(2) …………10分
(2)-(1)得:
…………12分
(22)解:(Ⅰ)∵
∵直線相切,
∴ ∴ …………3分
∵橢圓C1的方程是 ………………6分
(Ⅱ)∵MP=MF2,
∴動點M到定直線的距離等于它到定點F1(1,0)的距離,
∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線 ………………6分
∴點M的軌跡C2的方程為 …………9分
(Ⅲ)Q(0,0),設(shè)
∴
∵
∴
∵,化簡得
∴ ………………11分
∴
當且僅當 時等號成立 …………13分
∵
∴當的取值范圍是
……14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com