18. 查看更多

 

題目列表(包括答案和解析)

(理)(本小題滿分12分)

    口袋里裝有大小相同的4個紅球和8個白球,甲、乙兩人依規(guī)則從袋中有放回摸球,每次摸出一個球,規(guī)則如下:若一方摸出一個紅球,則此人繼續(xù)下一次摸球;若一方摸出一個白球,則由對方接替下一次摸球,且每次摸球彼此相互獨立,并由甲進行第一次摸球;求在前三次摸球中,甲摸得紅球的次數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

(理)(本小題滿分12分)已知y=f(x)是偶函數(shù),當x>0時,,

 

且當時,恒成立,求的最小值.

 

查看答案和解析>>

(理)(本小題滿分12分)

直四棱柱中,底面為菱形,且延長線上的一點,.

(Ⅰ)求二面角的大。

(Ⅱ)在上是否存在一點,使?若存在,求的值;不存在,說明理由.

 

查看答案和解析>>

(理)(本小題滿分12分)

為振興旅游業(yè),四川省2009年面向國內(nèi)發(fā)行總量為2 000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡稱銀卡).某旅游公司組織了一個有36名游客的旅游團到四川名勝旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.

(1)在該團中隨機采訪2名游客,求恰有1人持銀卡的概率;

(2)在該團中隨機采訪2名游客,求其中持金卡與持銀卡人數(shù)相等的概率

 

查看答案和解析>>

(理)(本小題滿分12分)已知y=f(x)是偶函數(shù),當x>0時,,
且當時,恒成立,求的最小值.

查看答案和解析>>

 

 

一、選擇題:(1)-(12)CAADB 。拢粒粒茫摹 。茫

二、填空題:(13)  (14)  (15)  (16)

三、解答題:

(17)解:(1)                                   …………6分

(2)                 …………8分

 時,

時,

時,……11分

綜上所述:………………12分

(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨立的,所以恰好有兩家煤礦必須整改的概率是

                   ………………4分

(2)由題設(shè),必須整改的煤礦數(shù)服從二項分布,從而的數(shù)學期望是

,即平均有2.50家煤礦必須整改.       ………………8分

(3)某煤礦被關(guān)閉,即煤礦第一次安檢不合格,整改后復查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9,由題意,每家煤礦是否關(guān)閉是相互獨立的,所以5家煤礦都不被關(guān)閉的概率是

從而至少關(guān)閉一家煤礦的概率是          ………………12分

(19)證明:由多面體的三視圖知,四棱錐的底面是邊長為的正方形,側(cè)面是等腰三角形,,

且平面平面.……2分

(1)      學科網(wǎng)(Zxxk.Com)連結(jié),則的中點,

在△中,,………4分

   且平面平面,

 ∴∥平面  ………6分

(2) 因為平面⊥平面

平面∩平面,

 又,所以,⊥平面,

…………8分

,,所以△

等腰直角三角形,

,即………………10分

 又, ∴ 平面,

平面,

所以  平面⊥平面  ………………12分

(20)解:設(shè)

,

              ………………6分

(2)由題意得上恒成立。

在[-1,1]上恒成立。

設(shè)其圖象的對稱軸為直線,所以上遞減,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,數(shù)列                        …………6分

   (II)由得:

                                                                                

     …………(1)                            

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直線相切,

   ∴    …………3分

∵橢圓C1的方程是     ………………6分

(Ⅱ)∵MP=MF2,

∴動點M到定直線的距離等于它到定點F1(1,0)的距離,

∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線  ………………6分

∴點M的軌跡C2的方程為    …………9分

(Ⅲ)Q(0,0),設(shè) 

 

,化簡得

    ………………11分

當且僅當 時等號成立   …………13分

∴當的取值范圍是

……14分

 

 

 


同步練習冊答案