18.如圖.直三棱柱A1B1C1―ABC中.C1C=CB=CA=2.AC⊥CB. D.E分別為棱C1C.B1C1的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

(本小題12分)
如圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。


 
(1)證明:AB1⊥BC1;

(2)求點(diǎn)B到平面AB1C1的距離;
(3)求二面角C1—AB1—A1的大小。

查看答案和解析>>

(本小題滿分12分)

如圖,直三棱柱ABC−A1B1C1中, AC = BC = AA1,D是棱AA1的中點(diǎn),DC1⊥BD.

(Ⅰ)證明:DC1⊥BC;

(Ⅱ)求二面角A1−BD−C1的大。

 

查看答案和解析>>

(本小題滿分12分)
如圖,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中點(diǎn),DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大。

查看答案和解析>>

理 本小題滿分12分)

 
    如圖在直三棱柱ABC – A1B1C1中,∠BAC = 90°,AB = AC = a,AA1 = 2a,D為BC的中點(diǎn),E為CC1上的點(diǎn),且CE = CC1

   (I)求三棱錐B – AB1D的體積;

   (II)求證:BE⊥平面ADB1;

 (Ⅲ)求二面角B—AB1—D的大小.

查看答案和解析>>

(本小題滿分12分)

如圖,正三棱柱ABCA1B1C1的底面邊長(zhǎng)為a,點(diǎn)M在邊 BC上,△AMC1是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形。

   (Ⅰ)求證點(diǎn)M為邊BC的中點(diǎn);

   (Ⅱ)求點(diǎn)C到平面AMC1的距離;

   (Ⅲ)求二面角M—AC1—C的大小。

查看答案和解析>>

 

一、選擇題:(本大題共12小題,每小題5分,共60分)

20080801

2. 提示: 故選D

3. 提示:已知得d=3,a5=14,=3a5=42.故選B

4. 提示: 判斷cosα>0,sinα<0,數(shù)形結(jié)合.故選B

20090505

=  故選C

6. 提示: 如圖,取G的極端位置, 問(wèn)題轉(zhuǎn)化為求AE與的位置關(guān)系,取AD的中點(diǎn)M,連接MF、可證 可見(jiàn)AE與FG所成的角為  A故選D

7. 提示: 當(dāng)x>0時(shí),的圖像相同,故可排除(A)、(C)、(D).故選B

8.=5,得3n=5r+10 , 當(dāng)r=1時(shí),n=5.故選C

9.提示由,得,所以,  點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn)).故選B

 

 

 

10.提示:令f(x)= x2?(a2+b2?6b)x+ a2+b2+2a?4b+1,則由題意有f(0)= a2+b2+2a?6b+1≤0且f(1)=2a+2b+2≥0,即(a+1)2+(b?2)2≤4且a+b+1≥0,在直角坐標(biāo)平面aOb上作出其可行域如圖所示,而a2+b2+4a=(a+2)2+b2?4的幾何意義為|PA|2?4(其中P(a,b)為可行域內(nèi)任意的一點(diǎn),A(?2,0)). 由圖可知,當(dāng)P點(diǎn)在直線l:a+b+1=0上且AP⊥l時(shí)取得最小值;當(dāng)P點(diǎn)為AC(C為圓(a+1)2+(b?2)2≤4的圓心)的延長(zhǎng)線與圓C的交點(diǎn)時(shí)達(dá)到最大值. 又A點(diǎn)的直線l的距離為,|AC|=,所以a2+b2+4a的最大值和最小值分別為?和(+2)2?4=5+4.故選B.

11.提示: 易知數(shù)列{an}是以3為周期的數(shù)列,a1=2,  a2=   ,   a3= ,  a4 =2, 

a2009=故選B

12.提示: ∵是定義在R上的奇函數(shù),

,又由已知

,(A)成立;

∴(B)成立;當(dāng)時(shí),又為奇函數(shù),

,,且,

∴(C)即,

∴(C)成立;對(duì)于(D),有,由于時(shí)的符號(hào)不確定,

未必成立。故選D

 

 

 

二、填空題:(本大題共4小題,每小題5分,共20分)

13.5;提示:  Tr+1=(x)n-r(-)r,由題意知:-+=27n=9

∴展開(kāi)式共有10項(xiàng),二項(xiàng)式系數(shù)最大的項(xiàng)為第五項(xiàng)或第六項(xiàng),故項(xiàng)的系數(shù)最大的項(xiàng)為第五項(xiàng)。

14.(0,1)∪(1,10) ;提示: 當(dāng)a>1時(shí),不等式化為10-ax>a,要使不等式有解,必須10-a>0

∴1<a<10

當(dāng)0<a<1時(shí),不等式化為0<10-ax<a10-a<ax<10不等式恒有解

故滿足條件a的范圍是(0,1)∪(1,10)

15. ;提示: P=1-=

16. 提示:當(dāng)直角三角形的斜邊垂直與平面時(shí),所求面積最大。

三、解答題:(本大題共6小題,共70分)

17.(本大題10分)(1)不是,假設(shè)上的生成函數(shù),則

存在正實(shí)數(shù)使得恒成立,令,得,與

矛盾,

所以函數(shù)一定不是上的生成函數(shù)…………5分

(2)設(shè),因?yàn)?

所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

時(shí)

  …………………………………………10分

 

18.(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,

∴CC1⊥底面ABC,∴CC1⊥BC.

       ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

       ∴與平面A1C1CA所成角,

與平面A1C1CA所成角為.…………4分

(Ⅱ)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A1G 于M,連結(jié)BM,

       ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內(nèi)的射影,

       ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,

       平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn),

       ∴CG=2,DC=1 在直角三角形CDG中,

       即二面角B―A1D―A的大小為.……………………8分

(Ⅲ)取線段AC的中點(diǎn)F,則EF⊥平面A1BD.

證明如下:

∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,

∵EF在平面A1C1CA內(nèi)的射影為C1F,當(dāng)F為AC的中點(diǎn)時(shí),

C1F⊥A1D,∴EF⊥A1D.

同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

19.(解:(1)分別在下表中,填寫(xiě)隨機(jī)變量的分布列:

…4分

   (2);;

    

    

 …………………….. 9分

  ∴周長(zhǎng)的分布列為:

  ……….. 10分

   …. 12分

20.(Ⅰ) 設(shè)C(x, y),

, ,  

,

∴ 由定義知,動(dòng)點(diǎn)C的軌跡是以A、B為焦點(diǎn),

長(zhǎng)軸長(zhǎng)為的橢圓除去與x軸的兩個(gè)交點(diǎn).

.  ∴

∴ W:   . …………………………………………… 2分

(Ⅱ) 設(shè)直線l的方程為,代入橢圓方程,得

整理,得.         ①………………………… 5分

因?yàn)橹本l與橢圓有兩個(gè)不同的交點(diǎn)P和Q等價(jià)于

,解得

∴ 滿足條件的k的取值范圍為 ………… 7分

(Ⅲ)設(shè)P(x1,y1),Q(x2,y2),則=(x1+x2,y1+y2),

由①得.                 ②

                ③

因?yàn)?sub>,, 所以.……………………… 11分

所以共線等價(jià)于

將②③代入上式,解得

所以存在常數(shù)k,使得向量共線.…………………… 12分

21.解:(1)由題意得

解得,將代入,化簡(jiǎn)得

;………………4分    

(2)由題知,因?yàn)?sub>,所以

,則,

并且,因此,

從而,得,………..8分

(2)因?yàn)?sub>時(shí),故

,

從而………………12分

22.解: Ⅰ)∵=a+,x∈(0,e),∈[,+∞………………1分

   (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).

       ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………3分

   (2)若a<-,則由>0a+>0,即0<x<-

       由f(x)<0a+<0,即-<x≤e

       ∴f(x)=f(-)=-1+ln(-).

       令-1+ln(-)=-3,則ln(-)=-2.∴-=e

       即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………6分

   (Ⅱ)當(dāng)a=-1時(shí),f(x)=-x+lnx,=-1+=

       當(dāng)0<x<1時(shí),>0;當(dāng)x>1時(shí),<0.

       ∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上減函數(shù).

       從而f(x)=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.   ………8分

       令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-

   (1)當(dāng)0<x<2時(shí),有g(shù)(x)≥x-(1+)(x-1)-=>0.

   (2)當(dāng)x≥2時(shí),g′(x)=1-[(-)lnx+(1+)?]=

=

       ∴g(x)在[2,+∞上增函數(shù),

g(x)≥g(2)=

       綜合(1)、(2)知,當(dāng)x>0時(shí),g(x)>0,即|f(x)|>

故原方程沒(méi)有實(shí)解.       ……………………………………12分

 

 


同步練習(xí)冊(cè)答案