長度 查看更多

 

題目列表(包括答案和解析)

長度分別為2、x、x、x、x、x的六條線段能成為同一個四面體的六條棱的充要條件是( 。
A、x
2
3
3
B、
3
3
<x<2
C、
3
3
<x<
2
3
3
D、x>1

查看答案和解析>>

長度為a(a>0)的線段AB的兩個端點A、B分別在x軸和y軸上滑動,點P在線段AB上,且
AP
PB
(λ為常數(shù)且λ>0).
(I)求點P的軌跡方程C,并說明軌跡類型;
(II)當λ=2時,已知直線l1與原點O的距離為
a
2
,且直線l1與軌跡C有公共點,求直線l1的斜率k的取值范圍.

查看答案和解析>>

長度分別為2、x、x、x、x、x的六條線段能成為同一個四面體的六條棱的充要條件是
 

查看答案和解析>>

長度為a的線段AB的兩個端點A、B都在拋物線y2=2px(p>0,a>2p)上滑動,則線段 AB的中點M到y(tǒng)軸的最短距離為
1
2
(a-p)
1
2
(a-p)

查看答案和解析>>

長度為1,3,5,7四條線段中任取三條,能構(gòu)成三角形的概率(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

 

一、選擇題:(本大題共12小題,每小題5分,共60分)

20080801

2. 提示: 故選D

3. 提示:已知得d=3,a5=14,=3a5=42.故選B

4. 提示: 判斷cosα>0,sinα<0,數(shù)形結(jié)合.故選B

          <bdo id="m74jg"></bdo>
        • <small id="m74jg"></small>

            20090505

            =  故選C

            6. 提示: 如圖,取G的極端位置, 問題轉(zhuǎn)化為求AE與的位置關(guān)系,取AD的中點M,連接MF、可證 可見AE與FG所成的角為  A故選D

            7. 提示: 當x>0時,的圖像相同,故可排除(A)、(C)、(D).故選B

            8.=5,得3n=5r+10 , 當r=1時,n=5.故選C

            9.提示由,得,所以,  點P的軌跡是圓(除去與直線AB的交點).故選B

             

             

             

            10.提示:令f(x)= x2?(a2+b2?6b)x+ a2+b2+2a?4b+1,則由題意有f(0)= a2+b2+2a?6b+1≤0且f(1)=2a+2b+2≥0,即(a+1)2+(b?2)2≤4且a+b+1≥0,在直角坐標平面aOb上作出其可行域如圖所示,而a2+b2+4a=(a+2)2+b2?4的幾何意義為|PA|2?4(其中P(a,b)為可行域內(nèi)任意的一點,A(?2,0)). 由圖可知,當P點在直線l:a+b+1=0上且AP⊥l時取得最小值;當P點為AC(C為圓(a+1)2+(b?2)2≤4的圓心)的延長線與圓C的交點時達到最大值. 又A點的直線l的距離為,|AC|=,所以a2+b2+4a的最大值和最小值分別為?和(+2)2?4=5+4.故選B.

            11.提示: 易知數(shù)列{an}是以3為周期的數(shù)列,a1=2,  a2=   ,   a3= ,  a4 =2, 

            a2009=故選B

            12.提示: ∵是定義在R上的奇函數(shù),

            ,又由已知,

            ,(A)成立;

            ∴(B)成立;當,又為奇函數(shù),

            ,,且

            ∴(C)即,

            ∴(C)成立;對于(D),有,由于的符號不確定,

            未必成立。故選D

             

             

             

            二、填空題:(本大題共4小題,每小題5分,共20分)

            13.5;提示:  Tr+1=(x)n-r(-)r,由題意知:-+=27n=9

            ∴展開式共有10項,二項式系數(shù)最大的項為第五項或第六項,故項的系數(shù)最大的項為第五項。

            14.(0,1)∪(1,10) ;提示: 當a>1時,不等式化為10-ax>a,要使不等式有解,必須10-a>0

            ∴1<a<10

            當0<a<1時,不等式化為0<10-ax<a10-a<ax<10不等式恒有解

            故滿足條件a的范圍是(0,1)∪(1,10)

            15. ;提示: P=1-=

            16. 提示:當直角三角形的斜邊垂直與平面時,所求面積最大。

            三、解答題:(本大題共6小題,共70分)

            17.(本大題10分)(1)不是,假設(shè)上的生成函數(shù),則

            存在正實數(shù)使得恒成立,令,得,與

            矛盾,

            所以函數(shù)一定不是上的生成函數(shù)…………5分

            (2)設(shè),因為

            所以,當且僅當時等號成立,

            ,

              …………………………………………10分

             

            18.(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,

            ∴CC1⊥底面ABC,∴CC1⊥BC.

                   ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

                   ∴與平面A1C1CA所成角,

            與平面A1C1CA所成角為.…………4分

            (Ⅱ)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM,

                   ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內(nèi)的射影,

                   ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,

                   平面A1C1CA中,C1C=CA=2,D為C1C的中點,

                   ∴CG=2,DC=1 在直角三角形CDG中,,

                   即二面角B―A1D―A的大小為.……………………8分

            (Ⅲ)取線段AC的中點F,則EF⊥平面A1BD.

            證明如下:

            ∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

            ∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,

            ∵EF在平面A1C1CA內(nèi)的射影為C1F,當F為AC的中點時,

            C1F⊥A1D,∴EF⊥A1D.

            同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

            19.(解:(1)分別在下表中,填寫隨機變量的分布列:

            …4分

               (2);;

                

                

             …………………….. 9分

              ∴周長的分布列為:

              ……….. 10分

               …. 12分

            20.(Ⅰ) 設(shè)C(x, y),

            , ,  

            ,

            ∴ 由定義知,動點C的軌跡是以A、B為焦點,

            長軸長為的橢圓除去與x軸的兩個交點.

            .  ∴

            ∴ W:   . …………………………………………… 2分

            (Ⅱ) 設(shè)直線l的方程為,代入橢圓方程,得

            整理,得.         ①………………………… 5分

            因為直線l與橢圓有兩個不同的交點P和Q等價于

            ,解得

            ∴ 滿足條件的k的取值范圍為 ………… 7分

            (Ⅲ)設(shè)P(x1,y1),Q(x2,y2),則=(x1+x2,y1+y2),

            由①得.                 ②

                            ③

            因為,, 所以.……………………… 11分

            所以共線等價于

            將②③代入上式,解得

            所以存在常數(shù)k,使得向量共線.…………………… 12分

            21.解:(1)由題意得

            解得,將代入,化簡得

            ;………………4分    

            (2)由題知,因為,所以

            ,則,

            并且,因此,

            從而,得,………..8分

            (2)因為,故

            ,

            從而………………12分

            22.解: Ⅰ)∵=a+,x∈(0,e),∈[,+∞………………1分

               (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).

                   ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………3分

               (2)若a<-,則由>0a+>0,即0<x<-

                   由f(x)<0a+<0,即-<x≤e

                   ∴f(x)=f(-)=-1+ln(-).

                   令-1+ln(-)=-3,則ln(-)=-2.∴-=e,

                   即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………6分

               (Ⅱ)當a=-1時,f(x)=-x+lnx,=-1+=

                   當0<x<1時,>0;當x>1時,<0.

                   ∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上減函數(shù).

                   從而f(x)=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.   ………8分

                   令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-

               (1)當0<x<2時,有g(shù)(x)≥x-(1+)(x-1)-=>0.

               (2)當x≥2時,g′(x)=1-[(-)lnx+(1+)?]=

            =

                   ∴g(x)在[2,+∞上增函數(shù),

            g(x)≥g(2)=

                   綜合(1)、(2)知,當x>0時,g(x)>0,即|f(x)|>

            故原方程沒有實解.       ……………………………………12分

             

             


            同步練習冊答案