已知函數.對于上的任意.有如下條件: 查看更多

 

題目列表(包括答案和解析)

已知函數,對于上的任意,有如下條件

;  ②;  ③.其中能使恒成立的條件序號是           

查看答案和解析>>

已知函數,對于上的任意,有如下條件

;  ②;  ③

其中能使恒成立的條件序號是            .

查看答案和解析>>

已知函數,對于上的任意,有如下條件

;  ②;  ③.其中能使恒成立的條件序號是           

查看答案和解析>>

已知函數,對于上的任意,有如下條件:

;  ②;  ③

其中能使恒成立的條件序號是            。

查看答案和解析>>

已知函數,對于上的任意,有如下條件:

;  ②;  ③

其中能使恒成立的條件序號是            

查看答案和解析>>

一、選擇題

1.A      2.C      3.A      4.C      5.D      6.C    7.B     8.C      9.A      10.A

11.D    12.D

二、填空題

13.  10       14.         15.     4      16.

三、解答題

17.解:(Ⅰ)的內角和,由

       應用正弦定理,知

       ,

      

       因為

       所以,

       (Ⅱ)因為

                       

       所以,當,即時,取得最大值

 

 

18.解:(Ⅰ)總體平均數為

(Ⅱ)設表示事件“樣本平均數與總體平均數之差的絕對值不超過0.5”

從總體中抽取2個個體全部可能的基本結果有:,,,,,,,,,.共15個基本結果.

事件包括的基本結果有:,,,,,.共有7個基本結果.

所以所求的概率為

.      

19.解:(Ⅰ)  由三視圖可知,四棱錐的底面是邊長為1的正方形,

側棱底面,且.             

,

即四棱錐的體積為.            

(Ⅱ) 連結,

是正方形,

的中點,且的中點

                  

   

                   

(Ⅲ)不論點在何位置,都有.                        

證明如下:∵是正方形,∴.      

底面,且平面,∴.    

又∵,∴平面.                      

∵不論點在何位置,都有平面

∴不論點在何位置,都有.                        

20.解:(Ⅰ) , ,

          ,又,

          數列是以為首項,為公比的等比數列.

(Ⅱ)由(Ⅰ)知,即

,     ①

,②

由①②得

       ,

.又

數列的前項和

21.解:(Ⅰ)

因為函數的極值點,所以,即,因此

經驗證,當時,是函數的極值點.

(Ⅱ)由題設,

在區(qū)間上的最大值為時,

故得

反之,當時,對任意,

,

,故在區(qū)間上的最大值為

綜上,的取值范圍為.   

 22.解:(Ⅰ)設橢圓的半焦距為,依題意

,所求橢圓方程為

(Ⅱ)設

(1)當軸時,

(2)當軸不垂直時,

設直線的方程為

由已知,得

代入橢圓方程,整理得,

,

當且僅當,即時等號成立.當時,

綜上所述

最大時,面積取最大值

 

 

 


同步練習冊答案