(Ⅰ)證明:數(shù)列是等比數(shù)列, (Ⅱ)數(shù)列的前項和. 查看更多

 

題目列表(包括答案和解析)

等比數(shù)列{cn}滿足cn+1+cn=5•22n-1,n∈N*,數(shù)列{an}滿足an=log2cn
(Ⅰ)求{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項和.求證:Tn
1
2

(Ⅲ)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n 的值;若不存在,請說明理由.

查看答案和解析>>

設(shè)等比數(shù)列{an}的前n項的和為Sn,公比為q(q≠1).
(1)若S4,S12,S8成等差數(shù)列,求證:a10,a18,a14成等差數(shù)列;
(2)若Sm,Sk,St(m,k,t為互不相等的正整數(shù))成等差數(shù)列,試問數(shù)列{an}中是否存在不同的三項成等差數(shù)列?若存在,寫出兩組這三項;若不存在,請說明理由;
(3)若q為大于1的正整數(shù).試問{an}中是否存在一項ak,使得ak恰好可以表示為該數(shù)列中連續(xù)兩項的和?請說明理由.

查看答案和解析>>

設(shè)等比數(shù)列的前n項和為Sn,已知

(1)求數(shù)列通項公式;

(2)在之間插入n個數(shù),使這n+2個數(shù)組成一個公差為的等差數(shù)列。

   (Ⅰ)求證:

(Ⅱ)在數(shù)列中是否存在三項(其中m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由

 

查看答案和解析>>

設(shè)等比數(shù)列{an}的前n項的和為Sn,公比為q(q≠1).
(1)若S4,S12,S8成等差數(shù)列,求證:a10,a18,a14成等差數(shù)列;
(2)若Sm,Sk,St(m,k,t為互不相等的正整數(shù))成等差數(shù)列,試問數(shù)列{an}中是否存在不同的三項成等差數(shù)列?若存在,寫出兩組這三項;若不存在,請說明理由;
(3)若q為大于1的正整數(shù).試問{an}中是否存在一項ak,使得ak恰好可以表示為該數(shù)列中連續(xù)兩項的和?請說明理由.

查看答案和解析>>

設(shè)等比數(shù)列的前n項和為Sn,已知
(1)求數(shù)列通項公式;
(2)在之間插入n個數(shù),使這n+2個數(shù)組成一個公差為的等差數(shù)列。
(Ⅰ)求證:
(Ⅱ)在數(shù)列中是否存在三項(其中m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由

查看答案和解析>>

一、選擇題

1.A      2.C      3.A      4.C      5.D      6.C    7.B     8.C      9.A      10.A

11.D    12.D

二、填空題

13.  10       14.         15.     4      16.

三、解答題

17.解:(Ⅰ)的內(nèi)角和,由

       應(yīng)用正弦定理,知

       ,

      

       因?yàn)?sub>,

       所以

       (Ⅱ)因?yàn)?sub>

                        ,

       所以,當(dāng),即時,取得最大值

 

 

18.解:(Ⅰ)總體平均數(shù)為

(Ⅱ)設(shè)表示事件“樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5”

從總體中抽取2個個體全部可能的基本結(jié)果有:,,,,,,,,,.共15個基本結(jié)果.

事件包括的基本結(jié)果有:,,,,.共有7個基本結(jié)果.

所以所求的概率為

.      

19.解:(Ⅰ)  由三視圖可知,四棱錐的底面是邊長為1的正方形,

側(cè)棱底面,且.             

,

即四棱錐的體積為.            

(Ⅱ) 連結(jié)、

是正方形,

的中點(diǎn),且的中點(diǎn)

                  

   

                   

(Ⅲ)不論點(diǎn)在何位置,都有.                        

證明如下:∵是正方形,∴.      

底面,且平面,∴.    

又∵,∴平面.                      

∵不論點(diǎn)在何位置,都有平面

∴不論點(diǎn)在何位置,都有.                        

20.解:(Ⅰ) ,

          ,又,

          數(shù)列是以為首項,為公比的等比數(shù)列.

(Ⅱ)由(Ⅰ)知,即

設(shè),     ①

,②

由①②得

       ,

.又

數(shù)列的前項和

21.解:(Ⅰ)

因?yàn)?sub>函數(shù)的極值點(diǎn),所以,即,因此

經(jīng)驗(yàn)證,當(dāng)時,是函數(shù)的極值點(diǎn).

(Ⅱ)由題設(shè),

當(dāng)在區(qū)間上的最大值為時,

故得

反之,當(dāng)時,對任意,

,故在區(qū)間上的最大值為

綜上,的取值范圍為.   

 22.解:(Ⅰ)設(shè)橢圓的半焦距為,依題意

所求橢圓方程為

(Ⅱ)設(shè),

(1)當(dāng)軸時,

(2)當(dāng)軸不垂直時,

設(shè)直線的方程為

由已知,得

代入橢圓方程,整理得

,

當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,,

綜上所述

當(dāng)最大時,面積取最大值

 

 

 


同步練習(xí)冊答案