22. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)

已知實數(shù),曲線與直線的交點為(異于原點),在曲線 上取一點,過點平行于軸,交直線于點,過點平行于軸,交曲線于點,接著過點平行于軸,交直線于點,過點平行于軸,交曲線于點,如此下去,可以得到點,,…,,… .  設(shè)點的坐標(biāo)為,.

(Ⅰ)試用表示,并證明;   

(Ⅱ)試證明,且);

(Ⅲ)當(dāng)時,求證:  ().

查看答案和解析>>

(本題滿分14分)

 已知函數(shù)圖象上一點處的切線方程為

(Ⅰ)求的值;

(Ⅱ)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));

(Ⅲ)令,若的圖象與軸交于,(其中),的中點為,求證:處的導(dǎo)數(shù)

查看答案和解析>>

(本題滿分14分)

已知曲線方程為,過原點O作曲線的切線

(1)求的方程;

(2)求曲線,軸圍成的圖形面積S;

(3)試比較的大小,并說明理由。

查看答案和解析>>

(本題滿分14分)

已知中心在原點,對稱軸為坐標(biāo)軸的橢圓,左焦點,一個頂點坐標(biāo)為(0,1)

(1)求橢圓方程;

(2)直線過橢圓的右焦點交橢圓于A、B兩點,當(dāng)△AOB面積最大時,求直線方程。

查看答案和解析>>

(本題滿分14分)

如圖,在直三棱柱中,,,求二面角的大小。    

查看答案和解析>>

一、選擇題

1.A      2.C      3.A      4.C      5.D      6.C    7.B     8.C      9.A      10.A

11.D    12.D

二、填空題

13.  10       14.         15.     4      16.

三、解答題

17.解:(Ⅰ)的內(nèi)角和,由

       應(yīng)用正弦定理,知

       ,

      

       因為,

       所以

       (Ⅱ)因為

                        ,

       所以,當(dāng),即時,取得最大值

 

 

18.解:(Ⅰ)總體平均數(shù)為

(Ⅱ)設(shè)表示事件“樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5”

從總體中抽取2個個體全部可能的基本結(jié)果有:,,,,,,,,,.共15個基本結(jié)果.

事件包括的基本結(jié)果有:,,,,,.共有7個基本結(jié)果.

所以所求的概率為

.      

19.解:(Ⅰ)  由三視圖可知,四棱錐的底面是邊長為1的正方形,

側(cè)棱底面,且.             

,

即四棱錐的體積為.            

(Ⅱ) 連結(jié),

是正方形,

的中點,且的中點

                  

   

                   

(Ⅲ)不論點在何位置,都有.                        

證明如下:∵是正方形,∴.      

底面,且平面,∴.    

又∵,∴平面.                      

∵不論點在何位置,都有平面

∴不論點在何位置,都有.                        

20.解:(Ⅰ) , ,

          ,又,,

          數(shù)列是以為首項,為公比的等比數(shù)列.

(Ⅱ)由(Ⅰ)知,即,

設(shè),     ①

,②

由①②得

       ,

.又

數(shù)列的前項和

21.解:(Ⅰ)

因為函數(shù)的極值點,所以,即,因此

經(jīng)驗證,當(dāng)時,是函數(shù)的極值點.

(Ⅱ)由題設(shè),

當(dāng)在區(qū)間上的最大值為時,

,

故得

反之,當(dāng)時,對任意,

,故在區(qū)間上的最大值為

綜上,的取值范圍為.   

 22.解:(Ⅰ)設(shè)橢圓的半焦距為,依題意

,所求橢圓方程為

(Ⅱ)設(shè),

(1)當(dāng)軸時,

(2)當(dāng)軸不垂直時,

設(shè)直線的方程為

由已知,得

代入橢圓方程,整理得,

,

當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,,

綜上所述

當(dāng)最大時,面積取最大值

 

 

 


同步練習(xí)冊答案