(Ⅰ)求證:, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)求證:;
(Ⅱ)化簡:

查看答案和解析>>

(Ⅰ)求證:
(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1
;
(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

一、選擇題

1.C     2.D     3.B     4.B     5.C     6.D  7. B  8.C       9.D     10.B11.A      12.B

二、填空題

13.     14.-    15.[-1,2]     16.①④

三、解答題

17.解:(Ⅰ)由,,得

   ∴

于是

(Ⅱ)由,得

   又∵,

,得

   

   ∴

18.(Ⅰ)證明:在直四棱柱中,

       連結(jié),

       ,

       四邊形是正方形.

      

       又,,

       平面,

         平面

      

       平面,

       且

       平面,

       又平面,

      

(Ⅱ)連結(jié),連結(jié)

       設(shè),

       ,連結(jié),

       平面平面

       要使平面,

       須使,

       又的中點(diǎn).

       的中點(diǎn).

       又易知

      

       即的中點(diǎn).

       綜上所述,當(dāng)的中點(diǎn)時(shí),可使平面

 

 

 

 

19.解:(Ⅰ)

 

  更 愛 好 體 育

更 愛 好 文 娛

合         計(jì)

男            生

       15

       10

      25

女            生

        5

       10

      15

合            計(jì)

       20

       20

      40

                                            …………………………………5分

(Ⅱ)恰好是一男一女的概率是:

(Ⅲ)

∴有85%的把握可以認(rèn)為性別與是否更喜歡體育有關(guān)系。 

20.解:(Ⅰ)設(shè)等比數(shù)列的公比為

,得,從而,,

因?yàn)?sub>成等差數(shù)列,所以,

所以.故

(Ⅱ)

21.解:(Ⅰ),由已知,

解得

,,,

(Ⅱ)令,即,

,

在區(qū)間上恒成立,

22.解:(Ⅰ)設(shè)橢圓的半焦距為,依題意

所求橢圓方程為

(Ⅱ)設(shè),

(1)當(dāng)軸時(shí),

(2)當(dāng)軸不垂直時(shí),

設(shè)直線的方程為

由已知,得

代入橢圓方程,整理得

,

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.當(dāng)時(shí),

綜上所述

當(dāng)最大時(shí),面積取最大值

 

 


同步練習(xí)冊(cè)答案