① 命題“存在 的否定是“任意 , 查看更多

 

題目列表(包括答案和解析)

命題“存在實數x,使x>1”的否定是
對于任意的實數x,使得x≤1;
對于任意的實數x,使得x≤1;

查看答案和解析>>

下列說法:

①命題“存在” 的否定是“對任意的”;

②關于的不等式恒成立,則的取值范圍是;

③函數為奇函數的充要條件是;其中正確的個數是(    )

A.3         B.2        C.1      D.0

 

查看答案和解析>>

下列說法:

①命題“存在” 的否定是“對任意的”;

②關于的不等式恒成立,則的取值范圍是

③函數為奇函數的充要條件是;

其中正確的個數是(    )

     A.3         B.2        C.1      D.0

 

查看答案和解析>>

下列說法:
①命題“存在” 的否定是“對任意的”;
②關于的不等式恒成立,則的取值范圍是
③函數為奇函數的充要條件是;其中正確的個數是(   )

A.3B.2C.1D.0

查看答案和解析>>

下列說法:
①命題“存在”的否定是“對任意的”;
②關于x的不等式恒成立,則a的取值范圍是a<3;
③函數f(x)=alog2|x|+x+b為奇函數的充要條件是a+b=0;
其中正確的個數是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:,

       是減函數,由,得,,故選A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的單調遞增區(qū)間為

       (2)

             

             

             

18.解:(1)當時,有種坐法,

              ,即,

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列為          

0

2

3

4

              則

19.解:(1)時,

             

              又              ,

             

              是一個以2為首項,8為公比的等比數列

             

       (2)

             

              最小正整數

20.解法一:

       (1)設于點

              平面

于點,連接,則由三垂線定理知:是二面角的平面角.

由已知得

,

∴二面角的大小的60°.

       (2)當中點時,有平面

              證明:取的中點,連接、,則,

              ,故平面即平面

              平面,

              平面

解法二:由已知條件,以為原點,以、軸、軸、軸建立空間直角坐標系,則

             

       (1),

              ,設平面的一個法向量為

設平面的一個法向量為,則

二面角的大小為60°.

(2)令,則,

       ,

       由已知,,要使平面,只需,即

則有,得中點時,有平面

21.解:(1)由條件得,所以橢圓方程是

             

(2)易知直線斜率存在,令

       由

      

,

,

代入

       有

22.解:(1)

       上為減函數,時,恒成立,

       即恒成立,設,則

       時,在(0,)上遞減速,

      

      

(2)若即有極大值又有極小值,則首先必需有兩個不同正要,,

       即有兩個不同正根

       令

    ∴當時,有兩個不同正根

    不妨設,由知,

    時,時,時,

    ∴當時,既有極大值又有極小值.www.ks5u.com

 

 


同步練習冊答案