4.已知直線與橢圓總有交點.則m的取值范圍為 查看更多

 

題目列表(包括答案和解析)

(理)已知直線y=kx+1(k∈R)與橢圓+=1總有交點,則m的取值范圍為( )
A.(1,2]
B.[1,2)
C.[1,2)∪[2,+∞)
D.(2,+∞)

查看答案和解析>>

(理)已知直線y=kx+1(k∈R)與橢圓+=1總有交點,則m的取值范圍為( )
A.(1,2]
B.[1,2)
C.[1,2)∪[2,+∞)
D.(2,+∞)

查看答案和解析>>

(理)已知直線y=kx+1(k∈R)與橢圓數(shù)學公式+數(shù)學公式=1總有交點,則m的取值范圍為


  1. A.
    (1,2]
  2. B.
    [1,2)
  3. C.
    [1,2)∪[2,+∞)
  4. D.
    (2,+∞)

查看答案和解析>>

(理)已知直線y=kx+1(k∈R)與橢圓
x2
2
+
y2
m
=1總有交點,則m的取值范圍為( 。
A、(1,2]
B、[1,2)
C、[1,2)∪[2,+∞)
D、(2,+∞)

查看答案和解析>>

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點.

然后設點,的坐標分別, ,則,  

要使軸平分,只要得到。

(1)設為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設點,的坐標分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

1.A      2.C       3.B       4,C       5.B       6.B       7.C      8.B       9.C       10.B  學科網(wǎng)(Zxxk.Com)

11.B     12.D學科網(wǎng)(Zxxk.Com)

1.,在復平面對應的點在第一象限.學科網(wǎng)(Zxxk.Com)

3.當時,函數(shù)上,恒成立即上恒成立,可得學科網(wǎng)(Zxxk.Com)

       當時,函數(shù)上,恒成立學科網(wǎng)(Zxxk.Com)

上恒成立學科網(wǎng)(Zxxk.Com)

可得,對于任意恒成立學科網(wǎng)(Zxxk.Com)

所以,綜上得學科網(wǎng)(Zxxk.Com)

4.解法一:聯(lián)立,得學科網(wǎng)(Zxxk.Com)

方程總有解,需恒成立學科網(wǎng)(Zxxk.Com)

恒成立,得恒成立學科網(wǎng)(Zxxk.Com)

       ;又學科網(wǎng)(Zxxk.Com)

的取值范圍為學科網(wǎng)(Zxxk.Com)

解法二:數(shù)形結(jié)合,因為直線恒過定點(0,1),欲直線與橢圓總有交點,當且僅當點(0,1)在橢圓上或橢圓內(nèi),即學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

       的取值范圍為學科網(wǎng)(Zxxk.Com)

5.學科網(wǎng)(Zxxk.Com)

6.(略)學科網(wǎng)(Zxxk.Com)

7.展開式前二項的系數(shù)滿足可解得,或(舍去).從而可知有理項為學科網(wǎng)(Zxxk.Com)

8.,欲使為奇函數(shù),須使,觀察可知,、不符合要求,若,則,其在上是減函數(shù),故B正確學科網(wǎng)(Zxxk.Com)

時,,其在上是增函數(shù),不符合要求.學科網(wǎng)(Zxxk.Com)

9.等價于學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

畫圖可知,故學科網(wǎng)(Zxxk.Com)

10.如圖甲所示.設,點到直線的距離為

則由拋物線定義得,由點在雙曲線上,及雙曲線第一定義得

       ,又由雙曲線第二定義得,解之得

11.由巳知中獎20元的概率;中獎2元的概率,中獎5元的概率,由上面知娛樂中心收費為1560元.付出元,收入元,估計該中心收入480元.

12.設中點為,連.由已知得平面,作,交的延長線于,蓮.則為所求,設,則,在

中可求出,則

二、

13..提示:可以用換元法,原不等式為也可以用數(shù)形結(jié)合法.

,在同一坐標系內(nèi)分別畫出這兩個函數(shù)的圖象,由圖直觀得解集.

14.12.提示:經(jīng)判斷,為截面圓的直徑,再由巳知可求出球的半徑為

15..提示:由于

解得,又

所以,當時,取得最小值.

16.①②④

三、

17.懈:

,由正弦定理得,

,

,化簡得

為等邊三角形.

說明;本題是向量和三角相結(jié)合的題目,既考查了向量的基本知識,又考查了三角的有關知識,三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.

18.解:(1)分別記“客人游覽甲景點”、“客人游覽乙景點”、 “客人游覽丙景點”為事件、、.由已知、相互獨立,,客人游覽的景點數(shù)的可能取值為0,1,2.3,相應地客人沒有游覽的景點的可能取值為3,2,1,0,的取值為1,3,且

             

             

              的分布列為          

1

3

0.76

0.24

             

(2)解法一:上單凋遞增,要使上單調(diào)遞增,

當且僅當,即.從而

解法二:當時,單調(diào)遞增當時,不單調(diào)遞增,

19.解:(1)因

是公比為的等比數(shù)列,且

(2)由

      

      

      

注意到,可得,即

記數(shù)列的前項和為,則

兩式相減得:

從而

20.解:(1)如圖所示,連接因為平面,平面平面,平面平面所以;又的中點,故的中點

             

              底面

              與底面所成的角

              在中,

              所以與底面所成的角為45°.

(2)解琺一;如圖建立直角坐標系

       則,               

                                     設點的坐標為

              故          

             

             

              的坐標為

             

              故

       解法二:平面

              ,又

              平面

在正方形中,

21.解:(1)設點、的坐標分別為、的坐標為

時,設直線的斜率為

直線過點

的方程為

又已知                                               ①

                                                           ②

                                                        ③

                                                ④

∴式①一式②得

          ⑤

③式+④式得

                             ⑥

              ∴由式⑤、式⑥及

              得點的坐標滿足方程

                                        ⑦

時,不存在,此時平行于軸,因此的中點一定落在軸上,即的坐標為,顯然點(,0)滿足方程⑦

綜上所述,點的坐標滿足方程

設方程⑦所表示的曲線為

則由,

因為,又已知,

所以當時.,曲線與橢圓有且只有一個交點,

時,,曲線與橢圓沒有交點,因為(0,0)在橢圓內(nèi),又在曲線上,所以曲線在橢圓內(nèi),故點的軌跡方程為

(2)由解得曲線軸交于點(0,0),(0,

解得曲線軸交于點(0,0).(,0)

,即點為原點時,(,0)、(0,)與(0.0)重合,曲線與坐標軸只有一個交點(0,0).

,且,即點不在橢圓外且在除去原點的軸上時,曲線與坐標軸有兩個交點(0,)與(0,0),同理,當時,曲線與坐標軸有兩個交點(,0)、(0,0).

,且時,即點不在橢圓外,且不在坐標軸上時,曲線與坐標軸有三個交點(,0)、(0,)與(0,0).

22.解:(1)由

故直線的斜率為1.切點為,即(1,0),故的方程為:,

              ∴直線的圖象相切.等價于方程組,只有一解,

              即方程有兩個相等實根.

             

       (2),由

              ,,當時,是增函數(shù)。即

的單調(diào)遞增區(qū)間為(,0).

(3)由(1)知,,令

      

       由

,則

變化時,的變化關系如下表:

0

極大植ln2

,0)

0

0

極小植

(0,1)

1

0

極大值ln2

(1,

據(jù)此可知,當時,方程有三解

,方程有四解

時,方程有兩解

時,方程無解.

www.ks5u.com

 

 


同步練習冊答案