18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

1.A      2.C       3.B       4,C       5.B       6.B       7.C      8.B       9.C       10.B  學科網(wǎng)(Zxxk.Com)

11.B     12.D學科網(wǎng)(Zxxk.Com)

1.,在復(fù)平面對應(yīng)的點在第一象限.學科網(wǎng)(Zxxk.Com)

3.當時,函數(shù)上,恒成立即上恒成立,可得學科網(wǎng)(Zxxk.Com)

       當時,函數(shù)上,恒成立學科網(wǎng)(Zxxk.Com)

上恒成立學科網(wǎng)(Zxxk.Com)

可得,對于任意恒成立學科網(wǎng)(Zxxk.Com)

所以,綜上得學科網(wǎng)(Zxxk.Com)

4.解法一:聯(lián)立,得學科網(wǎng)(Zxxk.Com)

方程總有解,需恒成立學科網(wǎng)(Zxxk.Com)

恒成立,得恒成立學科網(wǎng)(Zxxk.Com)

       ;又學科網(wǎng)(Zxxk.Com)

的取值范圍為學科網(wǎng)(Zxxk.Com)

解法二:數(shù)形結(jié)合,因為直線恒過定點(0,1),欲直線與橢圓總有交點,當且僅當點(0,1)在橢圓上或橢圓內(nèi),即學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

       的取值范圍為學科網(wǎng)(Zxxk.Com)

5.學科網(wǎng)(Zxxk.Com)

6.(略)學科網(wǎng)(Zxxk.Com)

7.展開式前二項的系數(shù)滿足可解得,或(舍去).從而可知有理項為學科網(wǎng)(Zxxk.Com)

8.,欲使為奇函數(shù),須使,觀察可知,、不符合要求,若,則,其在上是減函數(shù),故B正確學科網(wǎng)(Zxxk.Com)

時,,其在上是增函數(shù),不符合要求.學科網(wǎng)(Zxxk.Com)

9.等價于學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

畫圖可知,故學科網(wǎng)(Zxxk.Com)

10.如圖甲所示.設(shè),點到直線的距離為

則由拋物線定義得,由點在雙曲線上,及雙曲線第一定義得

       ,又由雙曲線第二定義得,解之得

11.由巳知中獎20元的概率;中獎2元的概率,中獎5元的概率,由上面知娛樂中心收費為1560元.付出元,收入元,估計該中心收入480元.

12.設(shè)中點為,連.由已知得平面,作,交的延長線于,蓮.則為所求,設(shè),則,在

中可求出,則

二、

13..提示:可以用換元法,原不等式為也可以用數(shù)形結(jié)合法.

,在同一坐標系內(nèi)分別畫出這兩個函數(shù)的圖象,由圖直觀得解集.

14.12.提示:經(jīng)判斷,為截面圓的直徑,再由巳知可求出球的半徑為

15..提示:由于

解得,又

所以,當時,取得最小值.

16.①②④

三、

17.懈:

,由正弦定理得,

,

,化簡得

為等邊三角形.

說明;本題是向量和三角相結(jié)合的題目,既考查了向量的基本知識,又考查了三角的有關(guān)知識,三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.

18.解:(1)分別記“客人游覽甲景點”、“客人游覽乙景點”、 “客人游覽丙景點”為事件、.由已知、相互獨立,,客人游覽的景點數(shù)的可能取值為0,1,2.3,相應(yīng)地客人沒有游覽的景點的可能取值為3,2,1,0,的取值為1,3,且

             

             

              的分布列為          

1

3

0.76

0.24

             

(2)解法一:上單凋遞增,要使上單調(diào)遞增,

當且僅當,即.從而

解法二:當時,單調(diào)遞增當時,不單調(diào)遞增,

19.解:(1)因

是公比為的等比數(shù)列,且

(2)由

      

      

      

注意到,可得,即

記數(shù)列的前項和為,則

兩式相減得:

從而

20.解:(1)如圖所示,連接因為平面,平面平面,平面平面所以;又的中點,故的中點

             

              底面

              與底面所成的角

              在中,

              所以與底面所成的角為45°.

(2)解琺一;如圖建立直角坐標系

       則,               

                                     設(shè)點的坐標為

              故          

             

             

              的坐標為

             

              故

       解法二:平面

              ,又

              平面

在正方形中,

21.解:(1)設(shè)點、的坐標分別為、的坐標為

時,設(shè)直線的斜率為

直線過點

的方程為

又已知                                               ①

                                                           ②

                                                        ③

                                                ④

∴式①一式②得

          ⑤

③式+④式得

                             ⑥

              ∴由式⑤、式⑥及

              得點的坐標滿足方程

                                        ⑦

時,不存在,此時平行于軸,因此的中點一定落在軸上,即的坐標為,顯然點(,0)滿足方程⑦

綜上所述,點的坐標滿足方程

設(shè)方程⑦所表示的曲線為

則由,

因為,又已知,

所以當時.,曲線與橢圓有且只有一個交點

時,,曲線與橢圓沒有交點,因為(0,0)在橢圓內(nèi),又在曲線上,所以曲線在橢圓內(nèi),故點的軌跡方程為

(2)由解得曲線軸交于點(0,0),(0,

解得曲線軸交于點(0,0).(,0)

,即點為原點時,(,0)、(0,)與(0.0)重合,曲線與坐標軸只有一個交點(0,0).

,且,即點不在橢圓外且在除去原點的軸上時,曲線與坐標軸有兩個交點(0,)與(0,0),同理,當時,曲線與坐標軸有兩個交點(,0)、(0,0).

,且時,即點不在橢圓外,且不在坐標軸上時,曲線與坐標軸有三個交點(,0)、(0,)與(0,0).

22.解:(1)由

故直線的斜率為1.切點為,即(1,0),故的方程為:,

              ∴直線的圖象相切.等價于方程組,只有一解,

              即方程有兩個相等實根.

             

       (2),由

              ,,當時,是增函數(shù)。即

的單調(diào)遞增區(qū)間為(,0).

(3)由(1)知,,令

      

       由

,則

變化時,的變化關(guān)系如下表:

0

極大植ln2

,0)

0

0

極小植

(0,1)

1

0

極大值ln2

(1,

據(jù)此可知,當時,方程有三解

,方程有四解

時,方程有兩解

時,方程無解.

www.ks5u.com

 

 


同步練習冊答案