(2)點的軌跡與坐標軸的交點的個數. 查看更多

 

題目列表(包括答案和解析)

(1) 在直角坐標系xOy中,曲線的參數方程為為參數),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|.

(2) 某旅游景點給游人準備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應球槽內).恰逢周末,某同學看了一個小時,留心數了數,有80人次玩.試用你學過的知識分析,這一小時內游戲莊家是贏是賠? 通過計算,你得到什么啟示?

 

查看答案和解析>>

(1) 在直角坐標系xOy中,曲線的參數方程為為參數),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
(2) 某旅游景點給游人準備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應球槽內).恰逢周末,某同學看了一個小時,留心數了數,有80人次玩.試用你學過的知識分析,這一小時內游戲莊家是贏是賠? 通過計算,你得到什么啟示?

查看答案和解析>>

(1) 在直角坐標系xOy中,曲線的參數方程為為參數),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
(2) 某旅游景點給游人準備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應球槽內).恰逢周末,某同學看了一個小時,留心數了數,有80人次玩.試用你學過的知識分析,這一小時內游戲莊家是贏是賠? 通過計算,你得到什么啟示?

查看答案和解析>>

在平面直角坐標系XOY中,已知定點A(0,a),B(0,-a),M,N是x軸上兩個不同的動點,且,直線AM與直線BN交于C點.

(1)求點C的軌跡方程;

(2)若存在過點(0,-1)且不與坐標軸垂直的直線l與點C的軌跡交于不同的兩點E、F,且|AE|=|AF|,求實數a的取值范圍.

查看答案和解析>>

已知動點與定點的距離和它到直線的距離之比是常數,記的軌跡為曲線.

(I)求曲線的方程;

(II)設直線與曲線交于兩點,點關于軸的對稱點為,試問:當變化時,直線軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結論;若不是,請說明理由.

 

查看答案和解析>>

1.A      2.C       3.B       4,C       5.B       6.B       7.C      8.B       9.C       10.B  學科網(Zxxk.Com)

11.B     12.D學科網(Zxxk.Com)

1.,在復平面對應的點在第一象限.學科網(Zxxk.Com)

3.當時,函數上,恒成立即上恒成立,可得學科網(Zxxk.Com)

       當時,函數上,恒成立學科網(Zxxk.Com)

上恒成立學科網(Zxxk.Com)

可得,對于任意恒成立學科網(Zxxk.Com)

所以,綜上得學科網(Zxxk.Com)

4.解法一:聯(lián)立,得學科網(Zxxk.Com)

方程總有解,需恒成立學科網(Zxxk.Com)

恒成立,得恒成立學科網(Zxxk.Com)

       ;又學科網(Zxxk.Com)

的取值范圍為學科網(Zxxk.Com)

解法二:數形結合,因為直線恒過定點(0,1),欲直線與橢圓總有交點,當且僅當點(0,1)在橢圓上或橢圓內,即學科網(Zxxk.Com)

       學科網(Zxxk.Com)

       的取值范圍為學科網(Zxxk.Com)

5.學科網(Zxxk.Com)

6.(略)學科網(Zxxk.Com)

7.展開式前二項的系數滿足可解得,或(舍去).從而可知有理項為學科網(Zxxk.Com)

8.,欲使為奇函數,須使,觀察可知,、不符合要求,若,則,其在上是減函數,故B正確學科網(Zxxk.Com)

時,,其在上是增函數,不符合要求.學科網(Zxxk.Com)

9.等價于學科網(Zxxk.Com)

       學科網(Zxxk.Com)

畫圖可知,故學科網(Zxxk.Com)

10.如圖甲所示.設,點到直線的距離為

則由拋物線定義得,由點在雙曲線上,及雙曲線第一定義得

       ,又由雙曲線第二定義得,解之得

11.由巳知中獎20元的概率;中獎2元的概率,中獎5元的概率,由上面知娛樂中心收費為1560元.付出元,收入元,估計該中心收入480元.

12.設中點為,連.由已知得平面,作,交的延長線于,蓮.則為所求,設,則,在

中可求出,則

二、

13..提示:可以用換元法,原不等式為也可以用數形結合法.

,在同一坐標系內分別畫出這兩個函數的圖象,由圖直觀得解集.

14.12.提示:經判斷,為截面圓的直徑,再由巳知可求出球的半徑為

15..提示:由于

解得,又

所以,當時,取得最小值.

16.①②④

三、

17.懈:

,由正弦定理得,

,化簡得

為等邊三角形.

說明;本題是向量和三角相結合的題目,既考查了向量的基本知識,又考查了三角的有關知識,三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.

18.解:(1)分別記“客人游覽甲景點”、“客人游覽乙景點”、 “客人游覽丙景點”為事件、、.由已知、相互獨立,,客人游覽的景點數的可能取值為0,1,2.3,相應地客人沒有游覽的景點的可能取值為3,2,1,0,的取值為1,3,且

             

             

              的分布列為          

1

3

0.76

0.24

             

(2)解法一:上單凋遞增,要使上單調遞增,

當且僅當,即.從而

解法二:當時,單調遞增當時,不單調遞增,

19.解:(1)因

是公比為的等比數列,且

(2)由

      

      

      

注意到,可得,即

記數列的前項和為,則

兩式相減得:

從而

20.解:(1)如圖所示,連接因為平面,平面平面,平面平面所以;又的中點,故的中點

             

              底面

              與底面所成的角

              在中,

              所以與底面所成的角為45°.

(2)解琺一;如圖建立直角坐標系

       則,               

                                     設點的坐標為

              故          

             

             

              的坐標為

             

              故

       解法二:平面

              ,又

              平面

在正方形中,

21.解:(1)設點、的坐標分別為、的坐標為

時,設直線的斜率為

直線過點

的方程為

又已知                                               ①

                                                           ②

                                                        ③

                                                ④

∴式①一式②得

          ⑤

③式+④式得

                             ⑥

              ∴由式⑤、式⑥及

              得點的坐標滿足方程

                                        ⑦

時,不存在,此時平行于軸,因此的中點一定落在軸上,即的坐標為,顯然點(,0)滿足方程⑦

綜上所述,點的坐標滿足方程

設方程⑦所表示的曲線為

則由,

因為,又已知,

所以當時.,曲線與橢圓有且只有一個交點,

時,,曲線與橢圓沒有交點,因為(0,0)在橢圓內,又在曲線上,所以曲線在橢圓內,故點的軌跡方程為

(2)由解得曲線軸交于點(0,0),(0,

解得曲線軸交于點(0,0).(,0)

,即點為原點時,(,0)、(0,)與(0.0)重合,曲線與坐標軸只有一個交點(0,0).

,且,即點不在橢圓外且在除去原點的軸上時,曲線與坐標軸有兩個交點(0,)與(0,0),同理,當時,曲線與坐標軸有兩個交點(,0)、(0,0).

,且時,即點不在橢圓外,且不在坐標軸上時,曲線與坐標軸有三個交點(,0)、(0,)與(0,0).

22.解:(1)由

故直線的斜率為1.切點為,即(1,0),故的方程為:,

              ∴直線的圖象相切.等價于方程組,只有一解,

              即方程有兩個相等實根.

             

       (2),由

              ,當時,是增函數。即

的單調遞增區(qū)間為(,0).

(3)由(1)知,,令

      

       由

,則

變化時,的變化關系如下表:

0

極大植ln2

,0)

0

0

極小植

(0,1)

1

0

極大值ln2

(1,

據此可知,當時,方程有三解

,方程有四解

時,方程有兩解

時,方程無解.

www.ks5u.com

 

 


同步練習冊答案