.試在下列四個(gè)命題中找出一個(gè)與命題“無火不冒煙 等價(jià)的命題 A.若有火必冒煙 B.雖無火但有可能冒煙 C.冒煙處必有火 D.雖無煙但可能有火 查看更多

 

題目列表(包括答案和解析)

在下列四個(gè)命題中,其中為真命題的是( 。

查看答案和解析>>

在下列四個(gè)命題中:
①函數(shù)y=tan(x+
π
4
)
的定義域是{x|x≠
π
4
+kπ,k∈Z}
;
②y=tanx在其定義域內(nèi)為增函數(shù);
③若
a
c
=
b
c
,則必有
a
=
b
;
④函數(shù)y=cos2x+sinx的最小值為-1.
把正確的命題的序號(hào)都填在橫線上
①④
①④

查看答案和解析>>

13、在下列四個(gè)命題中,正確的共有( 。
①坐標(biāo)平面內(nèi)的任何一條直線均有傾斜角和斜率;
②直線的傾斜角的取值范圍是[0,π];
③若一條直線的斜率為tanα,則此直線的傾斜角為α;
④若一條直線的傾斜角為α,則此直線的斜率為tanα.

查看答案和解析>>

在下列四個(gè)命題中
①已知A、B、C、D是空間的任意四點(diǎn),則
AB
+
BC
+
CD
+
DA
=
0

②若{
a
b
,
c
}為空間的一組基底,則{
a
+
b
,
b
+
c
,
c
+
a
}也構(gòu)成空間的一組基底.
|(
a
b
)|•
c
=|
a
|•|
b
|•|
c
|

④對(duì)于空間的任意一點(diǎn)O和不共線的三點(diǎn)A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x,y,z∈R),則P、A、B、C四點(diǎn)共面.
其中正確的個(gè)數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

關(guān)于函數(shù)f(x)=sin(2x+
π
2
)
,在下列四個(gè)命題中:
①f(x)的最小正周期是
π
2
;
②f(x)是偶函數(shù);
③f(x)是圖象可以出g(x)=sin2x的圖象向左平移
π
2
個(gè)單位長(zhǎng)度得到;
④若f(x)=-
4
5
,-
π
2
<x<
π
2
,則cosx=
10
10

以上命題正確的是
 
(填上所有正確命題的序號(hào))

查看答案和解析>>

一,選擇題:           

 D C B CC,     CA BC B

二、填空題:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答題:

  16,   由已知得;所以解集:;

17, (1)由題意,=1又a>0,所以a=1.

      (2)g(x)=,當(dāng)時(shí),,無遞增區(qū)間;當(dāng)x<1時(shí),,它的遞增區(qū)間是

    綜上知:的單調(diào)遞增區(qū)間是

18, (1)當(dāng)0<t≤10時(shí),

是增函數(shù),且f(10)=240

當(dāng)20<t≤40時(shí),是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當(dāng)0<t≤10時(shí),令,則t=4  當(dāng)20<t≤40時(shí),令,則t≈28.57 

則學(xué)生注意力在180以上所持續(xù)的時(shí)間28.57-4=24.57>24

從而教師可以第4分鐘至第28.57分鐘這個(gè)時(shí)間段內(nèi)將題講完。

19, (I)……1分

       根據(jù)題意,                                                 …………4分

       解得.                                                            …………7分

   (II)因?yàn)?sub>……7分

   (i)時(shí),函數(shù)無最大值,

           不合題意,舍去.                                                                  …………11分

   (ii)時(shí),根據(jù)題意得

          

       解之得                                                                      …………13分

       為正整數(shù),=3或4.                                                       …………14分

 

20. (1)當(dāng)x∈[-1,0)時(shí), f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

當(dāng)x∈[2k-1,2k),(k∈Z)時(shí),x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

當(dāng)x∈[2k,2k+1](k∈Z)時(shí),x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故當(dāng)x∈[2k-1,2k+1](k∈Z)時(shí), f(x)的表達(dá)式為

    f(x)=

    loga[2-(x-2k)],x∈[2k,2k+1].

    (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當(dāng)x∈[0,1]時(shí)f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

    ∴[f(x)]max= f(0)= =,∴a=4.

    當(dāng)x∈[-1,1]時(shí),由f(x)>

        得

    f(x)是以2為周期的周期函數(shù),

    f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

    21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

    又8x f(x)4(x2+1) 對(duì)恒成立,∴a=c=2   f(x)=2(x+1)2

    (2)∵g(x)==,D={x?x-1  }

    X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}

     


    同步練習(xí)冊(cè)答案