題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一,選擇題:
D C B CC, CA BC B
二、填空題:
(11), -3, (12), 27 (13),
(14), . (15), -26,14,65
三、解答題:
16, 由已知得;所以解集:;
17, (1)由題意,=1又a>0,所以a=1.
(2)g(x)=,當時,=,無遞增區(qū)間;當x<1時,=,它的遞增區(qū)間是.
綜上知:的單調遞增區(qū)間是.
18, (1)當0<t≤10時,
是增函數(shù),且f(10)=240
當20<t≤40時,是減函數(shù),且f(20)=240 所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令,則t=4 當20<t≤40時,令,則t≈28.57
則學生注意力在180以上所持續(xù)的時間28.57-4=24.57>24
從而教師可以第4分鐘至第28.57分鐘這個時間段內將題講完。
19, (I)……1分
根據(jù)題意, …………4分
解得. …………7分
(II)因為……7分
(i)時,函數(shù)無最大值,
不合題意,舍去. …………11分
(ii)時,根據(jù)題意得
解之得 …………13分
為正整數(shù),=3或4. …………14分
20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為
|