題目列表(包括答案和解析)
拋物線的方程為,過拋物線上一點()作斜率為的兩條直線分別交拋物線于兩點(三點互不相同),且滿足(且).
(1)求拋物線的焦點坐標和準線方程;
(2)設直線上一點,滿足,證明線段的中點在軸上;
(3)當=1時,若點的坐標為,求為鈍角時點的縱坐標的取值范圍.
拋物線的方程為,過拋物線上一點()作斜率為的兩條直線分別交拋物線于兩點(三點互不相同),且滿足(且).
(1)求拋物線的焦點坐標和準線方程;
(2)設直線上一點,滿足,證明線段的中點在軸上;
(3)當=1時,若點的坐標為,求為鈍角時點的縱坐標的取值范圍.
拋物線的準線的方程為,該拋物線上的每個點到準線的距離都與到定點的距離相等,圓是以為圓心,同時與直線和相切的圓,
(Ⅰ)求定點的坐標;
(Ⅱ)是否存在一條直線同時滿足下列條件:
① 分別與直線和交于、兩點,且中點為;
② 被圓截得的弦長為2.
一、選擇題(4′×10=40分)
題號
1
2
3
4
5
6
7
8
9
10
答案
D
D
B
C
D
C
A
A
B
A
三、填空題(4′×4=16分)
11. 12. 13. 14.
三、解答題(共44分)
15.①解:原不等式可化為: ………………………2′
作根軸圖:
………………………4′
可得原不等式的解集為: ………………………6′
②解:直線的斜率 ………………………2′
∵直線與該直線垂直
∴ ………………………4′
則的方程為: ………………………5′
即為所求………………………6′
16.解:∵ ∴,且………………………1′
于是………………………3′
………………………4′
………………………5′
當且僅當: 即………………………6′
時,………………………7′
17.解:將代入中變形整理得:
………………………2′
首先且………………………3′
設
由題意得:
解得:或(舍去)………………………5′
由弦長公式得:………………………7′
18.解①設雙曲線的實半軸,虛半軸分別為,
由題得: ∴………………………1′
于是可設雙曲線方程為:………………………2′
將點代入可得:,
∴該雙曲線的方程為:………………………4′
②直線方程可化為:,
則它所過定點代入雙曲線方程:得:
∴………………………6′
又由得,
∴,或,…………7′
∴
∴……………………8′
19.解:①設中心關于的對稱點為,
則 解得:
∴,又點在左準線上,軸
∴的方程為:……………………4′
②設、、、
∵、、成等差數(shù)列,
∴,
即:
亦:
∴ ……………………6′
∴
由得……………………8′
∴, ∴
又由代入上式得:
∴, ∴……………………9′
∴,,
∴橢圓的方程為:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com