求橢圓的方程. 查看更多

 

題目列表(包括答案和解析)

橢圓的方程為上有一點P,它到橢圓的左準線的距離等于10,求點P到它的右焦點的距離。

查看答案和解析>>

橢圓的方程為上有一點P,它到橢圓的左準線的距離等于10,求點P到它的右焦點的距離。

查看答案和解析>>

求橢圓的長軸長和短軸長、離心率、焦點和頂點坐標及準線方程。

查看答案和解析>>

求橢圓的長軸長和短軸長、離心率、焦點和頂點坐標及準線方程。

查看答案和解析>>

已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點,

(1)求雙曲線的方程;

(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且的兩個交點A和B滿足(其中0為原點),求k的取值范圍。

 

查看答案和解析>>

一、選擇題(4′×10=40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

www.ks5u.com   作根軸圖:

 

 

 

                                                     ………………………4′

   可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

              ………………………4′

的方程為: ………………………5′

為所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

當且僅當:………………………6′

       時,………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………5′

由弦長公式得:………………………7′

18.解①設(shè)雙曲線的實半軸,虛半軸分別為,

由題得:   ∴………………………1′

于是可設(shè)雙曲線方程為:………………………2′

將點代入可得:,

∴該雙曲線的方程為:………………………4′

②直線方程可化為:,

則它所過定點代入雙曲線方程:得:

………………………6′

又由

,,…………7′

……………………8′

19.解:①設(shè)中心關(guān)于的對稱點為

解得:

,又點在左準線上,

的方程為:……………………4′

②設(shè)、、、

、成等差數(shù)列,

,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

,……………………9′

,

∴橢圓的方程為:

 

 

 


同步練習冊答案