(2)點(diǎn)的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù). 查看更多

 

題目列表(包括答案和解析)

(1) 在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動(dòng)點(diǎn),P點(diǎn)滿足,點(diǎn)P的軌跡為曲線.已知在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|.

(2) 某旅游景點(diǎn)給游人準(zhǔn)備了這樣一個(gè)游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個(gè)形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個(gè)鐵釘之間有1個(gè)空隙,第2行3個(gè)鐵釘之間有2個(gè)空隙,…,第8行9個(gè)鐵釘之間有8個(gè)空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號(hào)球槽,分別獎(jiǎng)4元、2元、0元、-2元.(一個(gè)玻璃球的滾動(dòng)方式:通過第1行的空隙向下滾動(dòng),小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動(dòng),落入第8行的某一個(gè)空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個(gè)小時(shí),留心數(shù)了數(shù),有80人次玩.試用你學(xué)過的知識(shí)分析,這一小時(shí)內(nèi)游戲莊家是贏是賠? 通過計(jì)算,你得到什么啟示?

 

查看答案和解析>>

(1) 在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動(dòng)點(diǎn),P點(diǎn)滿足,點(diǎn)P的軌跡為曲線.已知在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
(2) 某旅游景點(diǎn)給游人準(zhǔn)備了這樣一個(gè)游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個(gè)形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個(gè)鐵釘之間有1個(gè)空隙,第2行3個(gè)鐵釘之間有2個(gè)空隙,…,第8行9個(gè)鐵釘之間有8個(gè)空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號(hào)球槽,分別獎(jiǎng)4元、2元、0元、-2元.(一個(gè)玻璃球的滾動(dòng)方式:通過第1行的空隙向下滾動(dòng),小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動(dòng),落入第8行的某一個(gè)空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個(gè)小時(shí),留心數(shù)了數(shù),有80人次玩.試用你學(xué)過的知識(shí)分析,這一小時(shí)內(nèi)游戲莊家是贏是賠? 通過計(jì)算,你得到什么啟示?

查看答案和解析>>

(1) 在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動(dòng)點(diǎn),P點(diǎn)滿足,點(diǎn)P的軌跡為曲線.已知在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
(2) 某旅游景點(diǎn)給游人準(zhǔn)備了這樣一個(gè)游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個(gè)形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個(gè)鐵釘之間有1個(gè)空隙,第2行3個(gè)鐵釘之間有2個(gè)空隙,…,第8行9個(gè)鐵釘之間有8個(gè)空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號(hào)球槽,分別獎(jiǎng)4元、2元、0元、-2元.(一個(gè)玻璃球的滾動(dòng)方式:通過第1行的空隙向下滾動(dòng),小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動(dòng),落入第8行的某一個(gè)空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個(gè)小時(shí),留心數(shù)了數(shù),有80人次玩.試用你學(xué)過的知識(shí)分析,這一小時(shí)內(nèi)游戲莊家是贏是賠? 通過計(jì)算,你得到什么啟示?

查看答案和解析>>

在平面直角坐標(biāo)系XOY中,已知定點(diǎn)A(0,a),B(0,-a),M,N是x軸上兩個(gè)不同的動(dòng)點(diǎn),且,直線AM與直線BN交于C點(diǎn).

(1)求點(diǎn)C的軌跡方程;

(2)若存在過點(diǎn)(0,-1)且不與坐標(biāo)軸垂直的直線l與點(diǎn)C的軌跡交于不同的兩點(diǎn)E、F,且|AE|=|AF|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.

(I)求曲線的方程;

(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試問:當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.

 

查看答案和解析>>

1.B       2.C       3.B       4.C       5.B       6.B       7.C      8.B       9.C       10.B  學(xué)科網(wǎng)(Zxxk.Com)

11.C     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

3.當(dāng)時(shí),函數(shù)上,恒成立即上恒成立,可得學(xué)科網(wǎng)(Zxxk.Com)

       當(dāng)時(shí),函數(shù)上,恒成立學(xué)科網(wǎng)(Zxxk.Com)

上恒成立學(xué)科網(wǎng)(Zxxk.Com)

可得,對(duì)于任意恒成立學(xué)科網(wǎng)(Zxxk.Com)

所以,綜上得學(xué)科網(wǎng)(Zxxk.Com)

4.解法一:聯(lián)立,得學(xué)科網(wǎng)(Zxxk.Com)

方程總有解,需恒成立學(xué)科網(wǎng)(Zxxk.Com)

恒成立,得恒成立學(xué)科網(wǎng)(Zxxk.Com)

       ;又學(xué)科網(wǎng)(Zxxk.Com)

的取值范圍為學(xué)科網(wǎng)(Zxxk.Com)

解法二:數(shù)形結(jié)合,因?yàn)橹本恒過定點(diǎn)(0,1),要使直線與橢圓總有交點(diǎn)當(dāng)日僅當(dāng)點(diǎn)(0,1)在橢圓上或橢圓內(nèi),即學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

       的取值范圍為學(xué)科網(wǎng)(Zxxk.Com)

5.學(xué)科網(wǎng)(Zxxk.Com)

7.展開式前三項(xiàng)的系數(shù)滿足可解得,或(舍去).從而可知有理項(xiàng)為,故C正確.學(xué)科網(wǎng)(Zxxk.Com)

8.,欲使為奇函數(shù),須使,觀察可知,不符合要求,若,則,其在上是減函數(shù),故B正確

當(dāng)時(shí),,其在上是增函數(shù),不符合要求.

9.等價(jià)于

      

畫圖可知,故

10.如圖乙所示.設(shè),點(diǎn)到直線的距離為,則由拋物線定義得

又由點(diǎn)在橢圓上,及橢圓第一定義得

由橢圓第二定義得,解之得

11.從52張牌中任意取13張牌的全部取法為;缺少某一種花色的取法為,缺少兩種花色的取法為,缺少三種花色的取法為,根據(jù)容斥原理可知四種花色齊全的取法為

12.設(shè)中點(diǎn)為,連.由已知得平面,作,交的延長線于點(diǎn),連.則為所求,設(shè),則,在

中可求出,則

二、填空題

13.

提示:可以用換元法,原不等式為也可以用數(shù)形結(jié)合法.

,在同一坐標(biāo)系內(nèi)分別畫出這兩個(gè)函數(shù)的圖象,由圖直觀得解集.

14.12.提示:經(jīng)判斷,為截面團(tuán)的直徑,再由巳知可求出球的半徑為

15..提示:由于

解得,又

所以,當(dāng)時(shí),取得最小值.

16.①②④

三、解答題

17.懈:

,由正弦定理得,

,

,化簡得

為等邊三角形.

說明;本題是向量和三角相結(jié)合的題目,既考查了向量的基本知識(shí),又考查了三角的有關(guān)知識(shí),三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.

18.解:(1)在第一次更換燈泡工作中,不需要更換燈泡的概率為需要更換2只燈泡的概率為

       (2)對(duì)該盞燈來說,在第1、2次都更換了燈泡的概率為,在第一次未更換燈泡而在第二次需要更換燈泡的概率為,故所求的概率為

       (3)當(dāng)時(shí),

              由(2)知第二次燈泡更換工作中,某盞燈更換的概率

              故至少換4只燈泡的概率為

19.解:]

              因?yàn)楹瘮?shù)處的切線斜率為

              所以

              即                                           ①

              又

              得                                      ②

       (1)函數(shù)時(shí)有極值

                                    ③

              解式①②③得

              所以

       (2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間的值恒大于或等于零.

              則

              得,所以實(shí)數(shù)的取值范圍為

20.解:(1)連接因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6556977573ab79b844c6cb2d38dd862f.zip/73589.files/image231.gif" >平面,平面平面

所以;又的中點(diǎn),故的中點(diǎn)

              底面

              與底面所成的角

              在中,

學(xué)科網(wǎng)(Zxxk.Com)              所以與底面所成的角為45°.

(2)解法一;如圖建立直角坐標(biāo)系

       則, 

                       設(shè)點(diǎn)的坐標(biāo)為

              故   

             

             

              點(diǎn)的坐標(biāo)為

             

              故

       解法二:平面

              ,又

              平面

在正方形中,

21.解:(1)設(shè)點(diǎn)、的坐標(biāo)分別為、,點(diǎn)的坐標(biāo)為

當(dāng)時(shí),設(shè)直線的斜率為

直線過點(diǎn)

的方程為

又已知                                               ①

                                                           ②

                                                        ③

                                                ④

∴式①一式②得

          ⑤

③式+式④得

                             ⑥

              ∴由式⑤、式⑥及

              得點(diǎn)的坐標(biāo)滿足方程

                                        ⑦

當(dāng)時(shí),不存在,此時(shí)平行于軸,因此的中點(diǎn)一定落在軸上,即的坐標(biāo)為,顯然點(diǎn),0)滿足方程⑦

綜上,點(diǎn)的坐標(biāo)滿足方程

設(shè)方程⑦所表示的曲線為

則由,

因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6556977573ab79b844c6cb2d38dd862f.zip/73589.files/image674.gif" >,又已知,

所以當(dāng)時(shí). ,曲線與橢圓有且只有一個(gè)交點(diǎn),

當(dāng)時(shí),,曲線與橢圓沒有交點(diǎn),因?yàn)椋?,0)在橢圓內(nèi),又在曲線上,所以曲線在橢圓內(nèi),故點(diǎn)的軌跡方程為

(2)由解得曲線軸交于點(diǎn)(0,0),(0,

解得曲線軸交于點(diǎn)(0,0).(,0)

當(dāng),即點(diǎn)為原點(diǎn)時(shí),(,0)、(0,)與(0.0)重合,曲線與坐標(biāo)軸只有一個(gè)交點(diǎn)(0,0).

當(dāng),且,即點(diǎn)不在橢圓外且在除去原點(diǎn)的軸上時(shí),曲線與坐標(biāo)軸有兩個(gè)交點(diǎn)(0,)與(0,0),同理,當(dāng)時(shí),曲線與坐標(biāo)軸有兩個(gè)交點(diǎn)(,o)、(0,0).

當(dāng),且時(shí),即點(diǎn)不在橢圓且不在坐標(biāo)軸上時(shí),曲線與坐標(biāo)軸有三個(gè)交點(diǎn)(,0)、(0,)與(0,0).

22.(1)解:,又

              是以首項(xiàng)為,公比為的等比數(shù)列.

             

       (2)證明:設(shè)數(shù)列的公比為,則條件等式可化為:

數(shù)列為等差數(shù)列,

       (3)證明:由題意知

                                                     ①

              式①

                                                ②

              式①-式②得

             

             

             

             

www.ks5u.com

 

 


同步練習(xí)冊(cè)答案