9.已知 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知△ABC的外接圓的圓心O,BC>CA>AB,則
OA
OB
,
OA
OC
,
OB
OC
的大小關(guān)系為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

15、已知y=2x,x∈[2,4]的值域為集合A,y=log2[-x2+(m+3)x-2(m+1)]定義域為集合B,其中m≠1.
(Ⅰ)當(dāng)m=4,求A∩B;
(Ⅱ)設(shè)全集為R,若A⊆CRB,求實數(shù)m的取值范圍.

查看答案和解析>>

已知y=f(x)是定義在[-1,1]上的奇函數(shù),x∈[0,1]時,f(x)=
4x+a
4x+1

(Ⅰ)求x∈[-1,0)時,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
(Ⅱ)解不等式f(x)>
1
5

查看答案和解析>>

 

一、選擇題

1―10 ACBCB   DBCDD

二、填空題

11.    12.    13.―3     14.

15.2    16.    17.<

三、解答題:

18.解:(I)

      

   (II)由于區(qū)間的長度是為,為半個周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域為!14分

19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點F.

因為四邊形ABCD是菱形,所以AC⊥BD.……………………2分

又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分

而AC∩BD=F,所以AC⊥平面PDB.

E為PB上任意一點,DE平面PBD,所以AC⊥DE.……………………6分

   (Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.

S△ACE =AC?EF,在△ACE面積最小時,EF最小,則EF⊥PB.

S△ACE=9,×6×EF=9,解得EF=3. …………………8分

由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,

又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB!10分

作GH//CE交PB于點G,則GH⊥平面PAB,

所以∠GEH就是EG與平面PAB所成角。   ………………12分

在直角三角形CEB中,BC=6,

<ol id="drany"><strike id="drany"></strike></ol>
  • <s id="drany"><source id="drany"></source></s>
      • <dfn id="drany"><menu id="drany"></menu></dfn>

        20.解:(1)

           ………………5分

           ………………6分

           (2)若

           

           

        21.解:(1)

           

          ………………6分

           (2)由(1)可知

            要使對任意   ………………14分

        22.解:(1)依題意知,拋物線到焦點F的距離是

              …………4分

           (2)設(shè)圓的圓心為

           

            即當(dāng)M運動時,弦長|EG|為定值4。 ………………9分

           (III)因為點C在線段FD上,所以軸不平行,

            可設(shè)直線l的方程為

           

           (1)當(dāng)時,不存在這樣的直線l;

           (2)當(dāng)   ………………16分

         

         


        同步練習(xí)冊答案