17.已知函數(shù) 單調(diào)遞減區(qū)間, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)和函數(shù)f(x)=ax3-x2+1(a為常數(shù))
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若方程f(x)=0有三個不同的解,求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù)和函數(shù)f(x)=ax3-x2+1(a為常數(shù))
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若方程f(x)=0有三個不同的解,求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=
m
n
,其中向量
m
=(2cosx,1), 
n
=(cosx,
3
sin2x),x∈R

(1)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為
3
2
,求△ABC外接圓半徑R.

查看答案和解析>>

已知k∈R,函數(shù)f(x)=ax+k•bx(a>0,且a≠1;b>0,且b≠1)
(1)已知函數(shù)y=x+
1
x
(x>0)
在區(qū)間(0,1]上單調(diào)遞減,在區(qū)間[1,+∞)上單調(diào)遞增.若a=2,b=
1
2
,k=1
,求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若實數(shù)a,b滿足ab=1.求k的值,使得函數(shù)f(x)具有奇偶性.(寫出完整解題過程)

查看答案和解析>>

設(shè)函數(shù)f(x)=
m
n
,其中
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知f(A)=2,b=1△ABC的面積為
3
2
,求c的值.

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項中,只有一項符合)

1

2

3

4

5

6

7

8

9

10

11

12

C

A

C

B

B

A

D

B

D

A

C

理D

文C

二、填空題:本大題共4小題,每小題4分,共16分

13.(?∞,?2)    14.(理):15    文:(-1,0)∪(0,1)

15.2               16.①②③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(12分)

   (1)

             =……………………………………2分

             =………………………………………………4分

………………………………6分

得f(x)的減區(qū)間:………………8分

   (2)f(x平移后:

        …………………………………………10分

要使g(x)為偶函數(shù),則

    • 100080

      18.(12分)

         (1)馬琳勝出有兩種情況,3:1或3:2

              ………………………… 6分

         (2)

             

      分布列:    3      4     5

            P              ……………………10分

      E= ………………………………………………12分

      文科:前3次中獎的概率

      ……………………6分

      (2)在本次活動中未中獎的概率為

        (1-p)10…………………………………………………………8分

      恰在第10次中獎的概率為

      (1-p)9p………………………………………………………………10分

      ………………………………12分

      19.(12分)

      <strike id="bmxtr"><label id="bmxtr"></label></strike>

      <table id="bmxtr"><listing id="bmxtr"></listing></table>
      <ruby id="bmxtr"></ruby>
    • <video id="bmxtr"></video>

        EM是平行四邊形 …… 3分

        平面PAB ……5分

        (2)過Q做QF//PA  交AD于F

         QF⊥平面ABCD

        作FH⊥AC  H為垂足

        ∠QHF是Q―AC―D的平面角……8分

        設(shè)AF=x  則

        FD=2-x

        在Rt△QFH中,

        ……10分

        ∴Q為PD中點……12分

        解法2

        (1)如圖所示A(0,0,0)  B(1,0,0)C(1,1,0)D(0,2,0) p(0,0,1)

         M(0,1,……………………………………3分

        是平面PAB的法向量  

            故MC//平面PAB…………5分

        (2)設(shè)

        設(shè)是平面QAC的法向量

        ………………………………9分

        為平面ACD的法向量,于是

        ∴Q為PD的中點…………………………………………12分

        20.經(jīng)分析可知第n行有3n-2個數(shù),                  理科        文科

        前n-1行有                    

        第n行的第1個數(shù)是                   2分        4分

        (1)第10行第10個數(shù)是127                      4分         7分

        (2)表中第37行、38行的第1個數(shù)分別為1927,2036

        所以2008是此表中的第37行

        第2008-1927+1=82個數(shù)                         8分         14分

        (3)不存在

        第n行第1個數(shù)是

         第n+2行最后一個數(shù)是 

                             =

        這3行共有  (3n-2)+[3(n+1)-2]+[3(n+2)-2]

                  =9n+3  個數(shù)                                   10分

        這3行沒有數(shù)之和

                                  12分

        此方程無正整數(shù)解.

        21.(理科14分,文科12分)                                            理科 文科

        (1)P(0,b)  M(a,0) 沒N(x,y) 由

             由                  ②

        將②代入①得曲線C的軌跡方程為 y2 = 4x                              5分 6分

        (2)點F′(-1,0)  ,設(shè)直線ly = k (x+1) 代入y2 = 4x

        k2x2+2 (k2-2)x+k2=0

                                                     7分 8分

        設(shè)A(x1y1) B(x2,y2) D(x0,y0) 則

        故直線DE方程為

        令y=0 得   

        的取值范圍是(3,+∞)                                   10分 12分

        (3)設(shè)點Q的坐標(biāo)為(-1,t),過點Q的切線為:yt = k (x+1)

        代入y2 = 4x   消去 x整理得ky2-4y+4t+4k=0                            12分

        △=16-16k (t+k)    令

        兩切線l1,l2 的斜率k1,k2是此方程的兩根

        k1?k2=-1    故l1l2                                          14分

        22.文科:依題意                         2分

                                                         4分

                  若f (x)在(-1,0)上是增函數(shù),則在(-1,1)上

                  ∵的圖象是開口向下的拋物線                            6分

        解之得 t≥5                                                 12分

        理科:

        (1)

                                                2分

        x        0      (0,)         (,1)    1

                       ―         0        +

            -                  -4                -3

        所以    是減函數(shù)

                是增函數(shù)                                   4分

        的值域為[-4,-3]                              6分

        (2)

        ∵a≥1 當(dāng)

        時  g (x)↓

          時  g (x)∈[g (1),g (0)]=[1-2a3a2,-2a]                8分

        任給x1∈[0,1]  f (x1) ∈[-4,-3]

        存在x0∈[0,1]  使得  g (x0) = f (x1)

        則:[1-2a3a2,-2a]=[-4,-3]                                 10分

        即 

        又a≥1  故a的取值范圍為[1,]                                

         


        同步練習(xí)冊答案