題目列表(包括答案和解析)
(本小題滿分12分)
雅山中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報文科理科的情況如下表所示。
男 | 女 | |
文科 | 2 | 5 |
理科 | 10 | 3 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.07 | 2.71 | 3.84 | 5.02 | 6.64 | 7.88 | 10.83 |
(本小題滿分12分)(文科做前兩問;理科全做.)
某會議室用3盞燈照明,每盞燈各使用節(jié)能燈棍一只,且型號相同.假定每盞燈能否正常照明只與燈棍的壽命有關(guān),該型號的燈棍壽命為1年以上的概率為0.8,壽命為2年以上的概率為0.3,從使用之日起每滿1年進(jìn)行一次燈棍更換工作,只更換已壞的燈棍,平時不換.
(I)在第一次燈棍更換工作中,求不需要更換燈棍的概率;
(II)在第二次燈棍更換工作中,對其中的某一盞燈來說,求該燈需要更換燈棍的概率;
(III)設(shè)在第二次燈棍更換工作中,需要更換的燈棍數(shù)為ξ,求ξ的分布列和期望.
(本小題滿分12分)(文科做前兩問;理科全做.)
某會議室用3盞燈照明,每盞燈各使用節(jié)能燈棍一只,且型號相同.假定每盞燈能否正常照明只與燈棍的壽命有關(guān),該型號的燈棍壽命為1年以上的概率為0.8,壽命為2年以上的概率為0.3,從使用之日起每滿1年進(jìn)行一次燈棍更換工作,只更換已壞的燈棍,平時不換.
(I)在第一次燈棍更換工作中,求不需要更換燈棍的概率;
(II)在第二次燈棍更換工作中,對其中的某一盞燈來說,求該燈需要更換燈棍的概率;
(III)設(shè)在第二次燈棍更換工作中,需要更換的燈棍數(shù)為ξ,求ξ的分布列和期望.
(本題滿分12分)已知橢圓,過中心O作互相垂直的線段OA、OB與橢圓交于A、B, 求:
(1)的值
(2)判定直線AB與圓的位置關(guān)系
(文科)(3)求面積的最小值
(理科)(3)求面積的最大值
(本小題滿分12分)
某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,
其中8名女生中有3名報考理科,男生中有2名報考文科
(1)是根據(jù)以上信息,寫出列聯(lián)表
(2)用假設(shè)檢驗的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?參考公式
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.07 |
2.71 |
3.84 |
5.02 |
6.64 |
7.88 |
10.83 |
|
一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項中,只有一項符合)
1
2
3
4
5
6
7
8
9
10
11
12
C
A
C
B
B
A
D
B
D
A
C
理D
文C
二、填空題:本大題共4小題,每小題4分,共16分
13.(?∞,?2) 14.(理):15 文:(-1,0)∪(0,1)
15.2 16.①②③④
三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。
17.(12分)
(1)
=……………………………………2分
=………………………………………………4分
令………………………………6分
得f(x)的減區(qū)間:………………8分
(2)f(x)按平移后:
…………………………………………10分
要使g(x)為偶函數(shù),則
|