Q為直線x=-1上任一點(diǎn).過Q點(diǎn)作曲線C的兩條切線 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x3+ax2+x+2(x∈R)
(1)當(dāng)a=-1時(shí),求函數(shù)的極值
(2)若f(x)在x∈(-∞,∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
(3)(理科做,文科不用做)
若a=3時(shí),f(x)=x3+3x2+x+2的導(dǎo)函數(shù)f(x)是二次函數(shù),f(x)的圖象關(guān)于軸對稱.你認(rèn)為三次函數(shù)f(x)=x3+3x2+x+2的圖象是否具有某種對稱性,并證明你的結(jié)論.

查看答案和解析>>

(2006•蚌埠二模)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=(
12
)x
的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理科做,文科不做)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個(gè)符合條件的p值;如果不存在,請說明理由.(參考數(shù)據(jù):210=1024)

查看答案和解析>>

設(shè)f(x)=xlnx;對任意實(shí)數(shù)t,記gt(x)=(1+t)x-et
(1)判斷f(x),gt(x)的奇偶性;
(2)(理科做)求函數(shù)y=f(x)-g2(x)的單調(diào)區(qū)間;
  (文科做)求函數(shù)y=log0.1(g2(x))的單調(diào)區(qū)間;
(3)(理科做)證明:f(x)≥gt(x)對任意實(shí)數(shù)t恒成立.

查看答案和解析>>

精英家教網(wǎng)如圖,在棱長為2的正方體ABCD-A1B1C1D1中,M,N分別是A1A,B1B的中點(diǎn).
(1)求直線D1N與平面A1ABB1所成角的大小;
(2)求直線CM與D1N所成角的正弦值;
(3)(理科做)求點(diǎn)N到平面D1MB的距離.

查看答案和解析>>

已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至A′CD,使A′B=
3

(1)求證:BA′⊥面A′CD;
(2)求異面直線A′C與BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大。

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項(xiàng)中,只有一項(xiàng)符合)

1

2

3

4

5

6

7

8

9

10

11

12

C

A

C

B

B

A

D

B

D

A

C

理D

文C

二、填空題:本大題共4小題,每小題4分,共16分

13.(?∞,?2)    14.(理):15    文:(-1,0)∪(0,1)

15.2               16.①②③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(12分)

   (1)

             =……………………………………2分

             =………………………………………………4分

………………………………6分

得f(x)的減區(qū)間:………………8分

   (2)f(x平移后:

        …………………………………………10分

要使g(x)為偶函數(shù),則

    • <noscript id="wecem"></noscript>
      <tfoot id="wecem"><nav id="wecem"></nav></tfoot>

        100080

        18.(12分)

           (1)馬琳勝出有兩種情況,3:1或3:2

                ………………………… 6分

           (2)

               

        分布列:    3      4     5

              P              ……………………10分

        E= ………………………………………………12分

        文科:前3次中獎(jiǎng)的概率

        ……………………6分

        (2)在本次活動(dòng)中未中獎(jiǎng)的概率為

          (1-p)10…………………………………………………………8分

        恰在第10次中獎(jiǎng)的概率為

        (1-p)9p………………………………………………………………10分

        ………………………………12分

        19.(12分)

            <source id="wecem"></source>
          • EM是平行四邊形 …… 3分

            平面PAB ……5分

            (2)過Q做QF//PA  交AD于F

             QF⊥平面ABCD

            作FH⊥AC  H為垂足

            ∠QHF是Q―AC―D的平面角……8分

            設(shè)AF=x  則

            FD=2-x

            在Rt△QFH中,

            ……10分

            ∴Q為PD中點(diǎn)……12分

            解法2

            (1)如圖所示A(0,0,0)  B(1,0,0)C(1,1,0)D(0,2,0) p(0,0,1)

             M(0,1,……………………………………3分

            是平面PAB的法向量  

                故MC//平面PAB…………5分

            (2)設(shè)

            設(shè)是平面QAC的法向量

            ………………………………9分

            為平面ACD的法向量,于是

            ∴Q為PD的中點(diǎn)…………………………………………12分

            20.經(jīng)分析可知第n行有3n-2個(gè)數(shù),                  理科        文科

            前n-1行有                    

            第n行的第1個(gè)數(shù)是                   2分        4分

            (1)第10行第10個(gè)數(shù)是127                      4分         7分

            (2)表中第37行、38行的第1個(gè)數(shù)分別為1927,2036

            所以2008是此表中的第37行

            第2008-1927+1=82個(gè)數(shù)                         8分         14分

            (3)不存在

            第n行第1個(gè)數(shù)是

             第n+2行最后一個(gè)數(shù)是 

                                 =

            這3行共有  (3n-2)+[3(n+1)-2]+[3(n+2)-2]

                      =9n+3  個(gè)數(shù)                                   10分

            這3行沒有數(shù)之和

                                      12分

            此方程無正整數(shù)解.

            21.(理科14分,文科12分)                                            理科 文科

            (1)P(0,b)  M(a,0) 沒N(x,y) 由

                 由                  ②

            將②代入①得曲線C的軌跡方程為 y2 = 4x                              5分 6分

            (2)點(diǎn)F′(-1,0)  ,設(shè)直線ly = k (x+1) 代入y2 = 4x

            k2x2+2 (k2-2)x+k2=0

                                                         7分 8分

            設(shè)A(x1y1) B(x2,y2) D(x0,y0) 則

            故直線DE方程為

            令y=0 得   

            的取值范圍是(3,+∞)                                   10分 12分

            (3)設(shè)點(diǎn)Q的坐標(biāo)為(-1,t),過點(diǎn)Q的切線為:yt = k (x+1)

            代入y2 = 4x   消去 x整理得ky2-4y+4t+4k=0                            12分

            △=16-16k (t+k)    令

            兩切線l1l2 的斜率k1k2是此方程的兩根

            k1?k2=-1    故l1l2                                          14分

            22.文科:依題意                         2分

                                                             4分

                      若f (x)在(-1,0)上是增函數(shù),則在(-1,1)上

                      ∵的圖象是開口向下的拋物線                            6分

            解之得 t≥5                                                 12分

            理科:

            (1)

                                                    2分

            x        0      (0,)         (,1)    1

                           ―         0        +

                -                  -4                -3

            所以    是減函數(shù)

                    是增函數(shù)                                   4分

            時(shí)的值域?yàn)閇-4,-3]                              6分

            (2)

            ∵a≥1 當(dāng)時(shí)

            時(shí)  g (x)↓

              時(shí)  g (x)∈[g (1),g (0)]=[1-2a3a2,-2a]                8分

            任給x1∈[0,1]  f (x1) ∈[-4,-3]

            存在x0∈[0,1]  使得  g (x0) = f (x1)

            則:[1-2a3a2,-2a]=[-4,-3]                                 10分

            即 

            又a≥1  故a的取值范圍為[1,]                                

             


            同步練習(xí)冊答案
            <source id="wecem"></source>
              <kbd id="wecem"><cite id="wecem"></cite></kbd>
              <acronym id="wecem"><menu id="wecem"></menu></acronym><option id="wecem"><s id="wecem"></s></option>
              <strong id="wecem"></strong>