距離與到直線的距離和的最小值為 . 查看更多

 

題目列表(包括答案和解析)

直線l1:2x+4y+1=0與直線l2:2x+4y+3=0平行,點(diǎn)P是平面直角坐標(biāo)系內(nèi)任一點(diǎn),P到直線l1l2的距離分別為d1,d2,則d1d2的最小值是________.

查看答案和解析>>

已知直線l1∥l2,A是l1,l2之間的一定點(diǎn),并且A點(diǎn)到l1,l2的距離分別為3和4,B是直線l2上一動(dòng)點(diǎn),作AC⊥AB,且使AC與直線l1交于點(diǎn)C,則△ABC面積的最小值為( 。

查看答案和解析>>

已知直線l1:4x-3y+6=0和直線l2x=- (p>2).若拋物線Cy2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若拋物線上任意一點(diǎn)M處的切線l與直線l2交于點(diǎn)N,試問(wèn)在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知直線l14x3y60和直線l2x=- (p>2).若拋物線Cy22px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.

(1)求拋物線C的方程;

(2)若拋物線上任意一點(diǎn)M處的切線l與直線l2交于點(diǎn)N,試問(wèn)在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

已知直線l1∥l2,A是l1,l2之間的一定點(diǎn),并且A點(diǎn)到l1,l2的距離分別為3和4,B是直線l2上一動(dòng)點(diǎn),作AC⊥AB,且使AC與直線l1交于點(diǎn)C,則△ABC面積的最小值為( )
A.24
B.12
C.8
D.6

查看答案和解析>>

一、學(xué)科網(wǎng)(Zxxk.Com)

1.B       2.A      3.D      4.A      5.C       6.A      7.D      8.B       9.D      10.A 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.B學(xué)科網(wǎng)(Zxxk.Com)

1.由題意知,解得學(xué)科網(wǎng)(Zxxk.Com)

2.由,化得,解得學(xué)科網(wǎng)(Zxxk.Com)

3.,又學(xué)科網(wǎng)(Zxxk.Com)

4.設(shè)的角為的斜率的斜率學(xué)科網(wǎng)(Zxxk.Com)

,于是學(xué)科網(wǎng)(Zxxk.Com)

5.由條件,解,則學(xué)科網(wǎng)(Zxxk.Com)

學(xué)科網(wǎng)(Zxxk.Com)6.不等式組化得  學(xué)科網(wǎng)(Zxxk.Com)

       平面區(qū)域如圖所示,陰影部分面積:

      

7.由已知得,而

       ,則是以3為公比的等比數(shù)列.

8.,于是,而解得

9.函數(shù)可化為,令,

       可得其對(duì)稱中心為,當(dāng)時(shí)得對(duì)稱中心為

10.

11.由條件得:,則所以

12.沿球面距離運(yùn)動(dòng)路程最短,最短路程可以選

      

二、填空題

13.

       ,由垂直得.即

       ,解得

14.99

       在等差數(shù)列中,也是等差數(shù)列,由等差中項(xiàng)定理得

       所以

15.

由題意知,直線是拋物線的準(zhǔn)線,而的距離等于到焦點(diǎn)的距離.即求點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離和的最小值,就是點(diǎn)與點(diǎn)的距離,為

16.②

一方面.由條件,,得,故②正確.

另一方面,如圖,在正方體中,把、分別記作,平面、平面、平面分別記作、、,就可以否定①與③.

三、解答題

17.解:,且

       ,即

       又

      

      

       由余弦定理,

       ,故

18.解:(1)只有甲解出的概率:

       (2)只有1人解出的概率:

19.解:(1)由已知,∴數(shù)列的公比,首項(xiàng)

             

             

              又?jǐn)?shù)列中,

           ∴數(shù)列的公差,首項(xiàng)

             

             

             

             

             

           ∴數(shù)列的通項(xiàng)公式依次為

(2),

      

      

      

      

      

20.(1)證明;在直三棱柱中,

             

              又

             

              ,而,

           ∴平面平面

(2)解:取中點(diǎn),連接于點(diǎn),則

與平面所成角大小等于與平面所成角的大。

中點(diǎn),連接、,則等腰三角形中,

又由(1)得

為直線與面所成的角

,

∴直線與平面所成角的正切值為

(注:本題也可以能過(guò)建立空間直角坐標(biāo)系解答)

21.解:(1)設(shè)橢圓方程為,雙曲線方程為

              ,半焦距

              由已知得,解得,則

              故橢圓及雙曲線方程分別為

       (2)向量的夾解即是,設(shè),則

              由余弦定理得           ①

        由橢圓定義得                    ②

        由雙曲線定義得                   ③

        式②+式③得,式②式③得

將它們代入式①得,解得,所以向量夾角的余弦值為

22.解(1)由處有極值

                               ①

處的切線的傾斜角為

          ②

由式①、式②解得

設(shè)的方程為

∵原點(diǎn)到直線的距離為,

解得

不過(guò)第四象限,

所以切線的方程為

切點(diǎn)坐標(biāo)為(2,3),則,

解得

(2)

      

       上遞增,在上遞減

       而

       在區(qū)間上的最大值是3,最小值是

 


同步練習(xí)冊(cè)答案