A.19種 B.20種 C.24種 D.720種 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的通項公式是an=數(shù)學(xué)公式,則220是這個數(shù)列的


  1. A.
    第19項
  2. B.
    第20項
  3. C.
    第21項
  4. D.
    第22項

查看答案和解析>>

已知數(shù)列的通項公式是=,則220是這個數(shù)列的
[     ]
A.第19項      
B.第20項      
C.第21項    
D.第22項

查看答案和解析>>

在數(shù)列{an }中,a1=8,an+1 -an = -3,則 - 49是此數(shù)列中的第  項。w.w.w.k.s.5.u.c.o.m       

(A)19      (B)20     (C)21         (D)不是數(shù)列中的項。

查看答案和解析>>

(9)已知各頂點(diǎn)都在一個球面上的正四棱柱高為4,體積為16,則這個球的表面積是

(A)16π          (B)20π         (C)24π         (D)32π

查看答案和解析>>

(7)已知各頂點(diǎn)都在一個球面上的正四棱柱高為4,體積為16,則這個球的表面積是

(A)16π   (B)20π   (C)24π   (D)32π

查看答案和解析>>

1.B       2.A      3.C       4.B       5.A      6.B       7.D      8.C       9.C       1 0.B

11.B     12.D

【解析】

1.

2.

3.是方程的根,或8,又,

      

4.

5.畫出可行域,如圖,可看為區(qū)域內(nèi)的點(diǎn)與(0,0)連線的斜率,

      

6.       

7.連,設(shè)      平面

       與平面所成的角.        ,

      

8.據(jù)的圖象知          的解集為

9.由點(diǎn)的軌跡是以,為焦點(diǎn)的雙曲線一支.,

10.將命中連在一起的3槍看作一個整體和另外一槍命中的插入沒有命中的4槍留下的5個空檔,故有種.

11.設(shè),圓為最長弦為直徑,最短弦的中點(diǎn)為,

12.幾何體的表面積是三個圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為

二、

13.    平方得

      

14.55        

      

15.1     互為反函數(shù),

       ,

      

16.              ,設(shè)

三、解答題

17.(1)的最大值為2,的圖象經(jīng)過點(diǎn)

,

(2),

18.(1)∵當(dāng)時,總成等差數(shù)列,

              即,所以對時,此式也成立

              ,又,兩式相減,

              得

              成等比數(shù)列,

       (2)由(1)得

             

             

19.(1)由題意知,袋中黑球的個數(shù)為

              記“從袋中任意摸出2個球,得到的都是黑球”為事件,則

       (2)記“從袋中任意摸出2個球,至少得到一個白球”為事件,設(shè)袋中白球的個數(shù)為,則(含)..∴袋中白球的個數(shù)為5.

20.(1)證明:

連接

,又

              即        平面

(2)方法1   取的中點(diǎn),的中點(diǎn),的中點(diǎn),或其補(bǔ)角是所成的角,連接斜邊上的中線,,

      

              在中,由余弦定理得,

           ∴直線所成的角為

(方法2)如圖建立空間直角坐標(biāo)系

       則
             

      

      

    ∴直線所成的角為

(3)(方法l)

       平面,過,由三垂線定理得

              是二面角的平面角,

              ,又

中,,

∴二面角

(方法2)

在上面的坐標(biāo)系中,平面的法向量

設(shè)平面的法向量,則,

解得

∴二面角

21.(1)

的最小值為,,又直線的斜率為

,故

       (2),當(dāng)變化時,的變化情況如下表:

0

0

極大

極小

           ∴函數(shù)的單調(diào)遞增區(qū)間是

              ,

           ∴當(dāng)時,取得最小值

              當(dāng)時,取得最大值18.

21.(1)設(shè)

由拋物線定義,

上,,又

         舍去.

∴橢圓的方程為

       (2)① 直線的方程為

              為菱形,,設(shè)直線的方程為

              由,得

、在橢圓上,解得,設(shè),則,的中點(diǎn)坐標(biāo)為

為菱形可知,點(diǎn)在直線上,

∴直線的方程為

② ∵為菱形,且

,∴菱形的面積

∴當(dāng)時,菱形的面積取得最大值

 

 


同步練習(xí)冊答案