當(dāng).則.矛盾 8分 查看更多

 

題目列表(包括答案和解析)

((本題滿分8分)探究函數(shù)的最小值,并確定相應(yīng)的x的值,列表如下:

x

1

2

4

8

16

y

16.25

8.5

5

4

5

8.5

16.25

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列問(wèn)題:

(Ⅰ)若,則    (請(qǐng)?zhí)顚憽?gt;, =, <”號(hào));若函數(shù),(x>0)在區(qū)間(0,2)上遞減,則在         上遞增;

(Ⅱ)當(dāng)x=       時(shí),,(x>0)的最小值為         ;

(Ⅲ)試用定義證明,(x>0)在區(qū)間(0,2)上遞減.

 

查看答案和解析>>

第(1)小題滿分6分,第(2)小題滿分8分.

由于濃酸泄漏對(duì)河流形成了污染,現(xiàn)決定向河中投入固體堿。1個(gè)單位的固體堿在水中逐步溶化,水中的堿濃度與時(shí)間的關(guān)系,可近似地表示為。只有當(dāng)河流中堿的濃度不低于1時(shí),才能對(duì)污染產(chǎn)生有效的抑制作用。

(1)如果只投放1個(gè)單位的固體堿,則能夠維持有效抑制作用的時(shí)間有多長(zhǎng)?

(2)當(dāng)河中的堿濃度開始下降時(shí),即刻第二次投放1個(gè)單位的固體堿,此后,每一時(shí)刻河中的堿濃度認(rèn)為是各次投放的堿在該時(shí)刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.

 

查看答案和解析>>

若集合為集合A的一個(gè)分拆,并規(guī)定:當(dāng)且僅當(dāng)為集合A的同一分拆,則集合的不同分拆的種數(shù)為(  )

A.27          B.26        C.9        D.8

 

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)。科。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問(wèn),由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnxgx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分7分,第3小題滿分8分)

       由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;

   (2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫出Sn表達(dá)式,并證明你的結(jié)論;

   (3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案