題目列表(包括答案和解析)
證明:假設(shè)___________,則∠B是直角或鈍角.
(1)當(dāng)∠B是直角時(shí),因?yàn)椤螩是直角,所以∠B+∠C=180°,與三角形的內(nèi)角和定理矛盾.
(2)當(dāng)∠B為鈍角時(shí),∠B+∠C>180°,同理矛盾.故___________,原命題成立.
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)
(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
已知某地每單位面積的菜地年平均使用氮肥量與每單位面積蔬菜年平均產(chǎn)量之間有的關(guān)系如下數(shù)據(jù):
年份 | x(kg) | y(t) |
1985 | 70 | 5.1 |
1986 | 74 | 6.0 |
1987 | 80 | 6.8 |
1988 | 78 | 7.8 |
1989 | 85 | 9.0 |
1990 | 92 | 10.2 |
1991 | 90 | 10.0 |
1992 | 95 | 12.0 |
1993 | 92 | 11.5 |
1994 | 108 | 11.0 |
1995 | 115 | 11.8 |
1996 | 123 | 12.2 |
1997 | 130 | 12.5 |
1998 | 138 | 12.8 |
1999 | 145 | 13.0 |
(1)求x與y之間的相關(guān)系數(shù),并檢驗(yàn)是否線性相關(guān);
(2)若線性相關(guān),則求蔬菜產(chǎn)量y與使用氮肥x之間的回歸直線方程,并估計(jì)每單位面積施150kg時(shí),每單位面積蔬菜的平均產(chǎn)量.
證明:假設(shè) 或 .
當(dāng) 時(shí), 與 矛盾;
又當(dāng) 時(shí), 與 矛盾,所以假設(shè)不成立,從而 成立.
反證法的證明過(guò)程可以概括為“否定——推理——否定”,即從否定結(jié)論開(kāi)始,經(jīng)過(guò)正確的推理,導(dǎo)致邏輯矛盾,從而達(dá)到新的否定(即肯定原命題)的過(guò)程.用反證法證明命題“若m>n,則>”時(shí),應(yīng)假設(shè)的內(nèi)容為_(kāi)_______.
完成下列反證法證題的全過(guò)程:已知0<a≤3,函數(shù)f(x)=x3-ax在區(qū)間[1,+∞)上是增函數(shù),設(shè)當(dāng)x0≥1,f(x0)≥1時(shí),有f(f(x0))=x0,求證:f(x0)=x0.
證明:假設(shè)f(x0)≠x0,則必有 ① 或 ② .
若 ③ ,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則f(f(x0))>f(x0).
又f(f(x0))=x0,所以f(x0)<x0,這與 ④ 矛盾.
若x0>f(x0)≥1,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則 ⑤ .
又f(f(x0))=x0,所以f(x0)>x0,這與 ⑥ 矛盾.
綜上所述,當(dāng)x0≥1,f(x0)≥1且f(f(x0))=x0時(shí),有f(x0)=x0.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com