(1)求, 查看更多

 

題目列表(包括答案和解析)

1、求定義域時,應注意以下幾種情況.
(1)如果f(x)是整式,那么函數(shù)的定義域是
R
;
(2)如果f(x)是分式,那么函數(shù)的定義域是使
分母不等于零
的實數(shù)的集合;
(3)如果f(x)為二次根式,那么函數(shù)的定義域是使
被開方數(shù)不小于零
的實數(shù)的集合;
(4)如果f(x)為某一數(shù)的零次冪,那么函數(shù)的定義域是使
底數(shù)不為零
的實數(shù)的集合.

查看答案和解析>>

求下列各題的最值.
(1)已知x>0,y>0,lgx+lgy=1,,求z=
2
x
+
5
y
的最小值;
(2)x>0,求f(x)=
12
x
+3x的最小值
;
(3)x<3,求f(x)=
4
x-3
+x的最大值
;
(4)x∈R,求f(x)=sin2x+1+
5
sin2x+1
的最小值

查看答案和解析>>

求下列函數(shù)的導數(shù):
(1)y=(1-
x
)(1+
1
x
);
(2)y=
lnx
x
;
(3)y=tanx;
(4)y=xe1-cosx

查看答案和解析>>

2、求(-1+i)20展開式中第15項的數(shù)值;

查看答案和解析>>

求值:(1)
2cos10°-sin20°
sin70°

(2)tan(
π
6
-θ)+tan(
π
6
+θ)+
3
tan(
π
6
-θ)tan(
π
6
+θ).

查看答案和解析>>

一、選擇題:1―5 BDACB  6―12ABACA CB

二、填空題13.2   14.  15.16.①⑧⑤ 或①③⑧ 或④⑧①或④①⑧

17.(1)解:在中  

                                                 2分

    4分

      …….6分

   (2)                            10分

18.解:(1)在正方體中,

、、、分別為、中點

  即平面

 到平面的距離即到平面的距離.               3分

    在平面中,連結(jié)

之距為                    

因此到平面的距離為……………6分

   (2)在四面體中,

    又底面三角形是正三角形,

    設之距為

      故與平面所成角的正  …………12分

另解向量法

19.解:(Ⅰ)設、兩項技術指標達標的概率分別為、

由題意得:                  …………..…………..4分

  解得:,∴.   即,一個零件經(jīng)過檢測為合格品的概率為. ………. ……………………………….8分                     

(Ⅱ)任意抽出5個零件進行檢查,其中至多3個零件是合格品的概率為

 ………………..12分                               

20.解:(1)

   ………………4分

   (2)由

        …………8分

   (3)   

21.解:(1)

                  2分

-1

(x)

-

0

+

0

-

(x)

極小值0

極大值

                                      6分

   (2)

      

                    8分

………….12分

22.解法一:(Ⅰ)設點,則,由得:

,化簡得.……………….3分

(Ⅱ)(1)設直線的方程為:

,又,

聯(lián)立方程組,消去得:,

……………………………………6分

得:

,,整理得:

,,

.……………………………………………………………9分

解法二:(Ⅰ)由得:

,

所以點的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,,得

則:.…………①

過點分別作準線的垂線,垂足分別為,,

則有:.…………②

,

所以點的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,,得

則:.…………①

過點分別作準線的垂線,垂足分別為,

則有:.…………②

由①②得:,即

(Ⅱ)(2)解:由解法一,

當且僅當,即時等號成立,所以最小值為.…………..12分


同步練習冊答案