解得(驗證得時.切點在第二象限) 查看更多

 

題目列表(包括答案和解析)

用二分法求函數(shù)y=f(x)在區(qū)間[2,4]上零點的近似解,經(jīng)驗證有f(2)•f(4)<0.若給定精確度ε=0.01,取區(qū)間的中點x1=
2+42
=3
,計算得f(2)•f(x1)<0,則此時零點x0
 
.(填區(qū)間)

查看答案和解析>>

用二分法求函數(shù)y=f(x)在區(qū)間[2,4]上零點的近似解,經(jīng)驗證有f(2)•f(4)<0.取區(qū)間的中點為x1=3,計算得f(2)•f(x1)<0,則此時零點x0
(2,3)
(2,3)
;(填區(qū)間)

查看答案和解析>>

先閱讀下面的文字:“求
1+
1+
1+…
的值時,采用了如下的方式:令
1+
1+
1+…
=x
,則有x=
1+x
,兩邊平方,得1+x=x2,解得x=
1+
5
2
(負值已舍去)”.可用類比的方法,求2+
1
2+
1
2+…
的值為
1+
2
1+
2

查看答案和解析>>

若下列方程:,,至少有一個方程有實根,試求實數(shù)的取值范圍.

解:設(shè)三個方程均無實根,則有

解得,即

所以當時,三個方程至少有一個方程有實根.

 

查看答案和解析>>

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調(diào)遞增!最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習冊答案