題目列表(包括答案和解析)
把函數(shù)的圖象按向量平移得到函數(shù)的圖象.
(1)求函數(shù)的解析式; (2)若,證明:.
【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 證明:令,……6分
則……8分
,∴,∴在上單調(diào)遞增.……10分
故,即
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
A+B |
2 |
A-B |
2 |
閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
----------①
------②
由①+② 得 ------③
令 有
代入③得 .
(1)利用上述結(jié)論,試求的值。
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:;
對于解方程x2-2x-3=0的下列步驟:
①設(shè)f(x)=x2-2x-3
②計算方程的判別式Δ=22+4×3=16>0
③作f(x)的圖象
④將a=1,b=-2,c=-3代入求根公式
x=,得x1=3,x2=-1.
其中可作為解方程的算法的有效步驟為( )
A.①② B.②③
C.②④ D.③④