根據題意知:.即,所以 查看更多

 

題目列表(包括答案和解析)

若數列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數)對任意n∈N*都成立,則我們把數列{an}稱為“L型數列”.
(1)試問等差數列{an}、等比數列{bn}(公比為r)是否為L型數列?若是,寫出對應p、q的值;若不是,說明理由.
(2)已知L型數列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數列{an+1-xian}(i=1,2,n∈N*)是等比數列(只選其中之一加以證明即可).
(3)請你提出一個關于L型數列的問題,并加以解決.(本小題將根據所提問題的普適性給予不同的分值,最高10分)

查看答案和解析>>

(2009•黃浦區(qū)二模)若數列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數)對任意n∈N*都成立,則我們把數列{an}稱為“L型數列”.
(1)試問等差數列{an}、等比數列{bn}(公比為r)是否為L型數列?若是,寫出對應p、q的值;若不是,說明理由.
(2)已知L型數列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數列{an+1-xian}(i=1,2,n∈N*)是等比數列(只選其中之一加以證明即可).
(3)請你提出一個關于L型數列的問題,并加以解決.(本小題將根據所提問題的普適性給予不同的分值,最高10分)

查看答案和解析>>


同步練習冊答案