(Ⅱ)解:因為.故 查看更多

 

題目列表(包括答案和解析)

解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,

(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;

(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?

查看答案和解析>>

(2012•福建)受轎車在保修期內維修費等因素的影響,企業(yè)產生每輛轎車的利潤與該轎車首次出現故障的時間有關,某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年,現從該廠已售出的兩種品牌轎車中隨機抽取50輛,統(tǒng)計數據如下:
品牌          甲       乙
首次出現故障時間x(年) 0<x<1 1<x≤2 x>2 0<x≤2 x>2
轎車數量(輛) 2 3 45 5 45
每輛利潤(萬元) 1 2 3 1.8 2.9
將頻率視為概率,解答下列問題:
(I)從該廠生產的甲品牌轎車中隨機抽取一輛,求首次出現故障發(fā)生在保修期內的概率;
(II)若該廠生產的轎車均能售出,記住生產一輛甲品牌轎車的利潤為X1,生產一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(III)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一種品牌轎車,若從經濟效益的角度考慮,你認為應該產生哪種品牌的轎車?說明理由.

查看答案和解析>>

【答案】

【解析】設,有幾何意義知的最小值為, 又因為存在實數x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:,所以a的取值范圍是.故答案為:

查看答案和解析>>

受轎車在保修期內維修費等因素的影響,企業(yè)產生每輛轎車的利潤與該轎車首次出現故障的時間有關,某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年,現從該廠已售出的兩種品牌轎車中隨機抽取50輛,統(tǒng)計數據如下:
品牌     甲   乙
首次出現故障時間x(年)0<x<11<x≤2x>20<x≤2x>2
轎車數量(輛)2345545
每輛利潤(萬元)1231.820.9
將頻率視為概率,解答下列問題:
(I)從該廠生產的甲品牌轎車中隨機抽取一輛,求首次出現故障發(fā)生在保修期內的概率;
(II)若該廠生產的轎車均能售出,記住生產一輛甲品牌轎車的利潤為X1,生產一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(III)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一種品牌轎車,若從經濟效益的角度考慮,你認為應該產生哪種品牌的轎車?說明理由.

查看答案和解析>>

受轎車在保修期內維修費等因素的影響,企業(yè)產生每輛轎車的利潤與該轎車首次出現故障的時間有關,某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年,現從該廠已售出的兩種品牌轎車中隨機抽取50輛,統(tǒng)計數據如下:
品牌         甲      乙
首次出現故障時間x(年)0<x<11<x≤2x>20<x≤2x>2
轎車數量(輛)2345545
每輛利潤(萬元)1231.82.9
將頻率視為概率,解答下列問題:
(I)從該廠生產的甲品牌轎車中隨機抽取一輛,求首次出現故障發(fā)生在保修期內的概率;
(II)若該廠生產的轎車均能售出,記住生產一輛甲品牌轎車的利潤為X1,生產一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(III)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一種品牌轎車,若從經濟效益的角度考慮,你認為應該產生哪種品牌的轎車?說明理由.

查看答案和解析>>


同步練習冊答案